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Statistical mechanics of relativistic one-dimensional self-gravitating systems
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We consider the statistical mechanics of a general relativistic one-dimensional self-gravitating system. The
system consists ofN particles coupled to lineal gravity and can be considered as a model ofN relativistically
interacting sheets of uniform mass. The partition function and one-particle distribution functions are computed
to leading order in 1/c wherec is the speed of light; asc→` results for the nonrelativistic one-dimensional
self-gravitating system are recovered. We find that relativistic effects generally cause both position and mo-
mentum distribution functions to become more sharply peaked, and that the temperature of a relativistic gas is
smaller than its nonrelativistic counterpart at the same fixed energy. We consider the large-N limit of our results
and compare this to the nonrelativistic case.
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I. INTRODUCTION

One-dimensional systems ofN particles mutually interact-
ing through gravitational forces have been of interest in
trophysics for more than three decades. While used prima
as prototypes for the behavior of gravity in higher dime
sions, one-dimensional self-gravitating systems~OGS’s! also
conjectured to approximate the behavior of some phys
systems in three spatial dimensions. These include the
namics of stars in a direction orthogonal to the plane o
highly flattened galaxy@1# and the collisions of flat paralle
domain walls@2# ~i.e., sheets of stress energy@1#! moving in
directions perpendicular to their surfaces. Furthermore, v
long lived core-halo structures in the OGS phase space
known to exist, reminiscent of structures observed in glo
lar clusters, in which a dense massive core in near equ
rium is surrounded by a halo of stars with high kinetic e
ergy that interact only weakly with the core@3#.

The statistical properties of the OGS are particularly
triguing. Despite extensive study, many unanswered qu
tions remain. For example, it is not clear if the OGS c
attain a true equilibrium state from arbitrary initial cond
tions. Its ergodic and equipartition properties are still n
well understood. This is primarily because the particle int
actions of the OGS~as with any self-gravitating system! are
attractive and cumulatively long range, in strong contras
typical thermodynamic systems for which such interactio
are repulsive and short range. For the OGS the macrosc
dynamics does not decouple from the microscopic dynam
and the usual thermodynamic analysis does not apply.

However, there are some established features of the O
Rybicki @1# derived in closed form the single-particle distr
bution function in both the canonical and microcanoni
ensembles. In the large-N limit these distribution functions
reduce to the isothermal solution of the Vlasov equation.

All studies to date have neglected relativistic effects. T
limitation is understandable since no relativisticN-particle
Hamiltonian was available for analysis. However, this situ
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tion changed recently when a prescription for obtaining
Hamiltonian for a relativistic one-dimensional sel
gravitating system~ROGS! was given by Mann and Ohta
@4#. This Hamiltonian can be rigorously derived from a ge
erally covariant system coupling relativistic gravity in on
spatial dimension~i.e., a 111 dimensional theory of gravity
@5#! to N point particles. In the nonrelativistic limit, the
Hamiltonian reduces to that of the OGS. Although not ava
able in closed form, the Hamiltonian can be obtained a
series expansion in inverse powers of the speed of lightc to
arbitrary order.

We consider in this paper the one-particle distributi
function for the ROGS. Our work here is a natural extens
of previous work on theN-body problem in relativistic grav-
ity. In three spatial dimensions an exact solution to this pr
lem is known for pure Newtonian gravity~and a series solu
tion has been constructed for arbitraryN!. In the general
theory of relativity dissipation of energy in the form of grav
tational radiation has obstructed progress toward obtain
exact solutions to theN-body problem even whenN52.
However, for the ROGS an exact solution to the two-bo
problem was recently obtained@6#, and generalizations in
cluding a cosmological constant and/or charge subseque
followed @7–9#. These solutions include both an explicit e
pression for the proper separation of the two bodies a
function of time and an explicit expression for the Ham
tonian for the two-body ROGS as a function of the prop
separation and the center-of-inertia momentum of the bod

Encouraged by these results, we here make an attem
understand the basic features of theN-body ROGS. We shall
recapitulate the canonical formalism used in Ref.@4# to de-
rive the Hamiltonian for theN-body ROGS. We then com
pute the partition function and canonical distribution fun
tions. Using an integral transform we then calculate
microcanonical distribution functions. All results are
closed form to leading order in 1/c. We consider the limit of
largeN and compare the ROGS and the OGS. We close w
a few remarks. Lengthy intermediate calculations are c
fined to the Appendix.

We emphasize that, although we begin with a genera
covariant minimally coupled multiparticle action, we do n
©2002 The American Physical Society28-1
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have a fully general relativistic statistical mechanics. Suc
formulation is not yet within reach, primarily due to interpr
tational issues associated with retardation effects, the ch
of time coordinate, and the role of energy. However,
though we do not have an explicit form for the exactN-body
ROGS Hamiltonian, we do have a systematic means of c
puting it to any desired order in 1/c. We compute all quan-
tities to leading order in this parameter, interpreting the
sults in the context of the flat background about which
expansion is carried out.

II. CANONICAL N-PARTICLE HAMILTONIAN
OF THE ROGS

The OGS Hamiltonian is

H5(
a

pa
2

2ma
1pG(

a
(

b
mambuza2zbu

5(
a

pa
2

2ma
12pG(

a.b
mambuza2zbu, ~1!

where the summation is over allN particles, located at posi
tionsza along the spatial axis. The potential term straightf
wardly follows upon solving the Newtonian equation

¹2w54pGr, ~2!

in one spatial dimension, wherer5Samad(x2za) is the
mass density of theN point particles. Our task in this sectio
is to find a prescription for obtaining a relativistic genera
zation of Eq.~1!.

The Hamiltonian for the ROGS that we use is that o
(111)-dimensional theory~a lineal gravity theory! that
models (311)-dimensional general relativity in that it se
the Ricci scalar equal to the trace of the stress energ
prescribed matter fields and sources. Hence matter gov
the evolution of space-time curvature that reciprocally g
erns the evolution of matter@5#. We refer to this theory as
R5T theory. Apart from being able to model a number
textbook scenarios in general relativity@10#, it has the attrac-
tive feature of having a consistent Newtonian limit@5#. This
limit, essential for our purposes, is problematic in a gene
(111)-dimensional theory of gravity@11#.

Since the Einstein action is a topological invariant in
11) dimensions, a scalar~dilaton! field must be included in
the action@12#. Its coupling to the curvature is chosen so th
only the trace of the stress energy of matter~N point particles
here! is set equal to the Ricci scalar. This action will form th
basis for the ROGS we consider. Upon canonical reduc
of the action@4#, the ROGS Hamiltonian is given in terms o
a spatial integral of the second derivative of the dilaton fie
which is a function of the coordinates and momenta of
particles and is determined from the constraint equations

The action integral for the gravitational field coupled toN
point particles is
02612
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I 5E d2xF 1

2k
A2ggmnH CRmn1

1

2
¹mC¹nCJ

1(
a
E dtaH 2maS 2gmn~x!

dza
m

dta

dza
n

dta
D 1/2J

3d2
„x2za~ta!…G , ~3!

whereC is the dilaton field,gmn andg are the metric and its
determinant,R is the Ricci scalar, andta is the proper time
of ath particle whose mass isma , with k58pG/c4. We use
¹m to denote the covariant derivative associated withgmn .

The field equations derived from the action~3! are

R2gmn¹m¹nC50, ~4!

1

2
¹mC¹nC2

1

4
gmn¹lC¹lC1gmn¹l¹lC2¹m¹nC

5kTmn1
1

2
gmnL, ~5!

d

dta
H gmn~za!

dza
n

dta
J 2

1

2
gnl,m~za!

dza
n

dta

dza
l

dta
50, ~6!

where

Tmn5(
a

maE dta

1

A2g
gmsgnr

dza
s

dta

dza
r

dta
d2
„x2za~ta!…

~7!

is the stress energy due to the point masses. Equation~5!
guarantees the conservation ofTmn . Inserting the trace of
Eq. ~5! into Eq. ~4! yields

R2L5kTm
m . ~8!

Equations~5!, ~6!, and~8! form a closed system of equation
for gravity and matter.

In order to obtain the Hamiltonian in canonical form, w
first decompose the scalar curvature in terms of the extrin
curvatureK via

A2gR522]0~AgK !12]1@~N1K2]1N0!/Ag#, ~9!

where the metric is

ds252N0
2dt21gS dx1

N1

g
dtD 2

, ~10!

with K5(2N0g)21(2]1N12g21N1]1g2]0g), so that g
5g11, N05(2g00)21/2 and N15g10. Rewriting the action
~3! in first-order form yields
8-2
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I 5E d2xH(
a

pażad„x2za~ t !…1pġ

1PĊ1N0R01N1R1J , ~11!

wherep and P are the respective conjugate momenta tog
andC. Here

R052kAggp212kAgpP1
1

4kAg
~C8!22

1

k S C8

Ag
D 8

2(
a
Apa

2

g
1ma

2d„x2za~ t !…,

R15
g8

g
p2

1

g
PC812p81(

a

pa

g
d„x2za~ t !… ~12!

with the overdot and prime denoting]0 and]1 , respectively.
Variation of the action~11! yields the set of equations

ṗ1N0H 3k

2
Agp22

k

Ag
pP1

1

8kAgg
~C8!2

2(
a

pa
2

2g2Apa
2

g
1ma

2

d„x2za~ t !…

1N1H 2
1

g2 PC81
p8

g
1(

a

pa

g2 d„x2za~ t !…J
1N08

1

2kAgg
C81N18

p

g
50, ~13!

ġ2N0~2kAggp22kAgP!1N1

g8

g
22N1850, ~14!

R050, ~15!

R150, ~16!

Ṗ1]1S 2
1

g
N1P1

1

2kAg
N0C81

1

kAg
N08D 50, ~17!

Ċ1N0~2kAgp!2N1S 1

g
C8D50. ~18!
02612
ṗa1
]N0

]za

Apa
2

g
1ma

22
N0

2Apa
2

g
1ma

2

pa
2

g2

]g

]za

2
]N1

]za

pa

g

1N1

pa

g2

]g

]za

50, ~19!

ża2N0

pa

g

Apa
2

g
1ma

2

1
N1

g
50. ~20!

All metric components (N0 ,N1 ,g) in Eqs.~19! and~20! are
evaluated at the pointx5za , where

] f

]za
[

] f ~x!

]x U
x5zn

.

The quantitiesN0 andN1 are Lagrange multipliers that yield
the constraint equations~15! and ~16!. The above set of
equations can be proved to be equivalent to the set of e
tions ~4!, ~5!, and~6! @4#.

An examination of the generator of space and time tra
formations@4,6# indicates that we find that we can consi
tently choose the coordinate conditions

g51 and P50, ~21!

upon which the action~11! reduces to

I 5E d2xH(
a

paża~x2za!2HJ , ~22!

after elimination of the constraints, where

H5E dxH52
1

k E DC ~23!

is the Hamiltonian for the ROGS.
The fieldC is no longer arbitrary, but is instead a functio

of za and pa that is determined by solving the constrain
which are now

DC2
1

4
~C8!21k2p21k (

a51

N

Apa
21ma

2d~x2za!50,

~24!

2p81 (
a51

N

pad~x2za!50, ~25!

once the coordinate conditions~21! are imposed. Equation
~24! is an energy-balance equation which states that the
ergy of the particles plus the~negative! gravitational energy
8-3
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must vanish. Equation~25! states that the total momentum
the gravitational field and the particles must vanish. The c
sistency of this canonical reduction was proved in Ref.@4# by
showing that the canonical equations of motion derived fr
the reduced Hamiltonian~23! are identical with the Eqs.~19!
and ~20!.

The choice of coordinates~21! is the (111)-dimensional
analog of that made in the standard Arnowitt-Deser-Mis
decomposition in (311) dimensions@4,6#. It has the advan-
tage that it renders the Hamiltonian~23! explicitly time in-
dependent; it is implicitly time dependent insofar as it is
function only of the coordinates and momenta of theN par-
ticles in the system, each of which is time dependent. T
Hamiltonian has been shown to be equivalent to that
tained using the Noether theorem associated with diffeom
phism symmetry@13#. For a single particle, it is straightfor
ward to show that the solution to the above system
equations yields a metric that is asymptotically Rindler
~flat space in accelerated coordinates! on either side of the
mass@4#. A set ofN particles localized within a finite region
on the line will yield a metric with similar asymptotic beha
ior, since all delta-function contributions to the equations
motion vanish at large distances.

We turn next to an evaluation of the Hamiltonian~23!.
y

tic
n

an
o

r
s
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III. COMPUTATION OF THE ROGS HAMILTONIAN

Although the constraint equations are straightforward
solve in the regions between the particles, the matching c
ditions of these solutions at the juncture of the particles
quite nontrivial. For the two-body ROGS their enforceme
yields an equation that determines the Hamiltonian in ter
of the remaining degrees of freedom of the system. Wh
this procedure holds in principle for theN-body ROGS, we
have not found a tractable means of obtaining an analog
determining equation for the Hamiltonian.

However, it is possible to straightforwardly and rigorous
construct approximation schemes for computing the RO
Hamiltonian forN particles. For example, the postlinear a
proximation is an expansion of the Hamiltonian in powers
the gravitational couplingk, obtained by writing

C5kC~1!1k2C~2!1¯ , ~26!

x5x~0!1kx~1!1¯ , ~27!

wherex is defined byx8[p. Insertion of these expansion
into Eqs.~24!,~25! yields
H ~2!5(
a

Apa
21ma

21
k

8 (
a

(
b

~Apa
21ma

2Apb
21mb

22papb!ur abu1
ek

8 (
a

(
b

~Apa
21ma

2pb2paApb
21mb

2!r ab

1
1

4 S k

4D 2H(
a

Apa
21ma

2F(
b

pbur abu1e(
b

Apb
21mb

2r abG2

2(
a

paF(
b

pbur abu1e(
b

Apb
21mb

2r abG
3F(

c
Apc

21mc
2ur acu1e(

c
pcr acG1(

a
(

b
@Apa

21ma
2Apb

21mb
2ur abu2epaApb

21mb
2r ab#F(

c
Apc

21mc
2ur bcu

1e(
c

pcr bcG2(
a

(
b

@Apa
21ma

2pbur abu2epapbr ab#F(
c

pcur bcu1e(
c

Apc
21mc

2r bcG J , ~28!
upon insertion into Eq.~23!, wherer ab5za2zb is the rela-
tive separation between particlesa and b. It can be shown
that the solutions to Eqs.~24!,~25! must satisfy the boundar
condition C224k2x250 in the regionsuxu@uzau in order
for the Hamiltonian to be finite@4#.

The k expansion is appropriate for describing relativis
fast motion of the particles and can be carried out to a
desired order. However, to compare the ROGS fromR5T
theory with the OGS, we turn to the post-Newtonian exp
sion, which is an expansion of the Hamiltonian in powers
c21. Since bothpa

2/ma
2 andAk are of the order ofc22 all

terms up to the order ofc24 are included in the postlinea
Hamiltonian ~28!. The post-Newtonian Hamiltonian to thi
y

-
f

order is, therefore@4#,

H5 (
a51

N

mac21 (
a51

N pa
2

2ma
12pG(

a.b

N

mambur abu

2
1

c2 (
a51

N pa
4

8ma
3 1

pG

c2 (
a51

N

(
b51

N

ma

pb
2

mb
ur abu

2
2pG

c2 (
a.b

N

papbur abu1S pG

c D 2

(
a51

N

(
b51

N

(
c51

N

3mambmc@ ur abuur acu2r abr ac#1¯ , ~29!
8-4
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where the explicit powers ofc have been restored.
The first term in Eq.~29! is the total rest energy of th

particles, and the second two terms are the OGS Hamilto
~1!. The remaining terms are all relativistic corrections to t
OGS to orderc22. The first of these corrections is a specia
relativistic one, whereas the remaining corrections are du
relativistic gravity in one spatial dimension. Note that grav
not only modifies the potential to a quadratic form, but a
includes couplings between particle momenta and their p
tions. These features—modifications of the distance beha
of the potential and position-momentum couplings—a
fully analogous to those in general relativity in three spa
dimensions.

We next find the equations of motion for the position
the ath particle. This follows straightforwardly from Hamil
ton’s principle. We have

ża5
]H

]pa

5
pa

ma
2

1

c2 F pa
3

2ma
32

k

4 (
b51

N

mb

pa

ma
ur abu1

k

4 (
b51

N

pbur abuG ,

~30!

and

ṗa52
]H

]za

522pG(
b51

N

mamb«ab2
1

c2 FpG(
b51

N S ma

pb
2

mb
1mb

pa
2

ma
D

3«ab22pG(
b51

N

papb«ab12~pG!2

3 (
b51

N

(
c51

N

mambmc@«abur acu1«abur bcu2r ab#G , ~31!

where

«ab5H 1 za.zb

21 za,zb .

We can solve Eq.~30! for pa ,

pa5maża1
1

c2 Fma

ża
3

2
12pG(

b51

N

@~mbmaża

2mambżb!ur abu#G1¯ , ~32!

and then insert this into Eq.~31! for ṗa ,
02612
an
e

to

o
i-
or
e
l

maz̈a1
1

c2 Fmaz̈a

3ża
2

2
22pG(

b51

N

@~mbmaz̈a2mambz̈b!ur abu

1~mbmaża2mambżb!«ab~ ża2 żb!#G
522pG(

b51

N

mamb«ab2
1

c2 FpG(
b51

N

~mamb@ żb
21 ża

2# !

3«ab22pG(
b51

N

mambżażb«ab12~pG!2

3 (
b51

N

(
c51

N

mambmc@«abur acu1«abur bcu2r ab#G , ~33!

which simplifies to

maz̈a522pG(
b51

N

mamb«ab

1
pG

c2 (
b51

N

~mamb$3ża
21@ żb2 ża#2%«ab!

2S 2pG

c D 2

(
b51

N

(
c51

N

mambmc~«ac2«bc!ur abu

22S pG

c D 2

(
b51

N

(
c51

N

mambmc@«abur acu

1«abur bcu2r ab#, ~34!

upon an iterative substitution ofz̈a in powers ofc21. These
equations of motion reduce to those of the OGS in the li
c→`, and may be shown to be equivalent to the geode
equations to this order@4#.

As noted previously, we shall interpret the ROGS Ham
tonian ~29! in a post-Newtonian flat-space context. This
course sidesteps the deeper interpretational issues invo
in the development of a fully generally relativistic statistic
mechanics. However post-Newtonian flat-space interpr
tions of (311)-dimensional general relativity have been
enormous use in understanding how relativistic effe
modify Newtonian physics~e.g., perihelion precession
bending of light!. The approximations we employ here are
more severe, and so a study of the physics associated
the Hamiltonian~29! should afford us insight as to how
general-relativistic effects modify statistical systems. For
ample, retardation effects are accounted for by conside
the system as a set of particles moving in momentu
dependent potentials.

We wish to investigate the intrinsic structure of the syst
described by the Hamiltonian~29!. However, because of th
translation invariance of the system, two phase-space deg
of freedom are redundant, and so must be factored out;
erwise certain average properties such as density would
uniform throughout space.

Using Eq.~31!, it is straightforward to show that
8-5
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(
a51

N

ṗa50, ~35!

and @using also Eq.~30!# that the Hamiltonian is time inde
pendent. This means that we can perform the phase-s
integration subject to the constraint

p̄50 where p̄[ (
a51

N

pa , ~36!

since we can choose a frame of reference in which the ce
of inertia is constant.

Removing the redundant position degree-of-freedom
somewhat more delicate. Although the system is invari
under the translationza→za1 ẑ, Eq. ~32! implies

p̄[
1

N (
a51

N

pa5
1

N (
a51

N FmażaS 11
1

2

ża
2

c2D G , ~37!

which cannot be written as a total time derivative. Physica
the center of inertia is the relativistically well-defined co
cept, whereas the center of mass is not. However, we
deal with this problem by inserting a factor of unity in a
phase-space averages in the form

E
2`

`

dL d~ z̄2L !,

wherez̄[(1/M )(a51
N maza , with M5(a51

N ma . If the L de-
pendence of any integral trivially factors out~or can be re-
moved by a shift of variable in the integrand!, then we regard
the remaining quantity as the physically relevant one to
scribe the system.

For a canonical ensemble, all phase-space average
carried out with a weighting function expu2bHu, where
kBT5b21 is the temperature multiplied by Boltzmann
constantkB . For the microcanonical ensemble, an additio
constraint of fixed total energy

H~za ,pa!5E,

must be included, consistent with the time independenc
the Hamiltonian~29!. Since the system is in momentum is
lation, it is difficult to see how it can be in energy conta
with a heat bath, and so the physical relevance of the can
cal ensemble is somewhat unclear. However, an evalua
of quantities within the canonical ensemble is instructive
its own right and is a necessary preliminary to comput
quantities in the more realistic microcanonical ensemble,
so we include it in the present discussion.

Henceforth we setma5m, so thatM5Nm.

IV. THE CANONICAL ENSEMBLE

We consider in this section the relativistic corrections
the canonical one-particle distribution functionf c

R(p,z),
02612
ce

ter

is
t

,

an

-

are

l

of

t
ni-
on

g
d

which is defined to be the phase-space average of the q
tity

1

N (
a

d~z2za!d~p2pa!, ~38!

weighted by exp(2bH) with the constraintp̂50. Hence

f c
R~p,z!5

1

ZN! E E dp dzd~ p̄!E
2`

`

dL d~ z̄2L !

3exp~2bH !N21(
a

d~z2za!d~p2pa!,

~39!

where

Z5
1

N! E E dp dzd~ p̄!E
2`

`

dL d~ z̄2L !exp~2bH !

~40!

is the partition function and where the second line in Eq.~39!
follows from the indistinguishability of the particles. Not
that a shift of integration variable

za85za1L,

renders the partition function in the form

Z5
1

N! E2`

`

dLE E dp dz8 d~ p̄!d~ z̄8!exp~2bH !,

~41!

where theL dependence is seen to trivially factor out. It ca
therefore, be dropped~along with the prime notation! from
further consideration in the evaluation ofZ. Similarly the
single-particle distribution function becomes

f c
R~p,z!5

1

ZN! E2`

`

dLE E dp dzd~ p̄!d~ z̄8!

3exp~2bH !N21(
a

d~z2L2za8!d~p2pa!,

~42!

which is of the form*2`
` dL fc8

R(p,z2L). We, therefore,
regard f c8

R(p,z2L) as the physically relevant quantity
where

f c8
R~p,z!5

1

ZN! E E dp dzd~ p̄!d~ z̄8!

3exp~2bH !N21(
a

d~z2za8!d~p2pa!,

~43!
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and where the primes will hencefore be dropped.
Unlike the nonrelativistic case, neither the partition fun

tion nor f c
R(p,z) are separable. We proceed by first evalu

ing the partition function.
We first write the Hamiltonian~29! in the following form:

H5Mc21H01
1

c2 HR , ~44!

H05 (
a51

N pa
2

2m
12pGm2(

a.b

N

ur abu, ~45!

HR52 (
a51

N pa
4

8m3 1pG(
a51

N

(
b51

N

pb
2ur abu22pG(

a.b

N

papbur abu

1~pG!2(
a51

N

(
b51

N

(
c51

N

m3@ ur abuur acu2r abr ac#, ~46!

so that

exp~2bH !5e2bMc2
e2bH0S 12

b

c2 HRD1OS b2

c4 D ,

~47!

which is valid to the order in which we are working. Writin

d~ p̄!5
1

2p E dk expF ik (
a51

N

paG , ~48!

we have
02612
-
-

Z5
c2bMc2

N! E dzd~ z̄!expS 22pGbm2(
a.b

N

ur abu D
3E dk

2p E dp expS ik (
a51

N

pa2b (
a51

N pa
2

2mD
3S 12

b

c2 HRD . ~49!

A. The partition function

Consider first the integral

E dk

2p E dp expS ik (
a51

N

pa2b (
a51

N pa
2

2mD S 12
b

c2 HRD ,

~50!

which has integrals that are at most quartic in the mome
Straightforward Gaussian integration yields

E dk

2p E dp expS ik (
c51

N

pc2b(
c51

N pc
2

2mD 3H 1
papb

pa
4 J

5
1

AN
S 2pm

b D ~N21!/2

35
1

S m

b D3H N21

N
a5b

2
1

N
aÞb

S m

b D 2 3~N21!2

N2

6 .

~51!

Hence we obtain
E dk

2p E dp expS ik (
a51

N

pa2b (
a51

N pa
2

2mD S 12
b

c2 HRD

5
1

AN
S 2pm

b D ~N21!/2H S 12
b

c2 ~pG!2(
a51

N

(
b51

N

(
c51

N

m3@ ur abuur acu2r abr ac# D 2
pGb

c2 S m

b D

3
N21

N (
a51

N

(
b51

N

ur abu1
2pGb

c2 S 2
m

Nb D (
a.b

N

ur abu1
b

8m3c2

3~N21!2

N2 S m

b D 2S (
a51

N

1D J
5S 12

b~pG!2

c2 (
a51

N

(
b51

N

(
c51

N

m3@ ur abuur acu2r abr ac#2
2pGm

c2 (
a.b

N

ur abu1
3~N21!2

8Nbmc2 D 1

AN
S 2pm

b D ~N21!/2

.

~52!
8-7
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We next consider the integration over the spatial va
ables. Introducing

ul5zl 112zl 1< l<N, uN5
1

N (
m51

N

zm , ~53!

we have

(
a.b

N

ur abu5
1

2 (
a51

N

(
b51

N

ur abu5 (
l 51

N21

l ~N2 l !~zl 112zl !

5 (
l 51

N21

l ~N2 l !ul , ~54!

where without loss of generality the particles are ordered
the sequencez1<z2<¯<zN , and the overall result is the
multiplied by N! This gives

E dzd~ z̄!F~z!

5N! E
2`

`

dz1E
z1

`

dz2E
z2

`

dz3¯E
zN21

`

dzN d~ z̄!F~z!

5N! E
2`

`

duNE
0

`

du1E
0

`

du2¯E
0

`

duN...1d~uN!F~u!

5N! E du F~u!, ~55!
02612
-

n

provided the functionF(z) is symmetric under interchang
of any pair of variables, which is the case here. The inve
transformation reads

zn5uN2
1

N (
l 5n

N21

Dn,l where Dn,l5H 2 l , n. l

N2 l , n< l ,
~56!

and so we have

(
a51

N

(
b51

N

(
c51

N

@ ur abuur acu2r abr ac#

52S (
b.a.c

N

r bar ac1 (
b.a.c

N

r car abD
54 (

k51

N22

(
l 5k11

N21

~N2 l !~ l 2k!kuluk . ~57!

Consequently the partition function is
Z5
e2bMc2

AN
S 2pm

b D ~N21!/2E
0

`

du1E
0

`

du2¯E
0

`

duN21 expS 22pGbm2 (
n51

N21

n~N2n!unD
3S 12

4bm3

c2 ~pG!2 (
k51

N22

(
l 5k11

N21

~N2 l !~ l 2k!kuluk2
2pGm

c2 (
l 51

N21

l ~N2 l !ul1
3~N21!2

8Nbmc2 D . ~58!

The three basic integrals in Eq.~58! are

E du expS 2l (
n51

N21

n~N2n!unD 5
1

lN21@~N21!! #2 , ~59!

E du(
l 51

N21

k~N2k!uk expS 2l (
n51

N21

n~N2n!unD 5
N21

lN@~N21!! #2 , ~60!

E du(
k51

N22

(
l 5k11

N21

~N2 l !~ l 2k!kuluk expS 2l (
n51

N21

n~N2n!unD 5

(
k51

N22

(
l 5k11

N21
~ l 2k!

l ~N2k!

lN11@~N21!! #2 , ~61!

yielding
8-8
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Z5e2bMc2 1

AN
S 2pm

b
D ~N21!/2S 11

3~N21!2

8Nbmc2

~2pGbm2!N21@~N21!! #22
4b

c2

~pG!2m3

~2pGbm2!N11@~N21!! #2

3 (
k51

N21

(
l 5k11

N21
~ l 2k!

l ~N2k!
2

2pGm

c2

N21

~2pGbm2!N@~N21!! #2
D

5

e2bMc2S 2pm

b
D ~N21!/2

AN~2pGbm2!N21@~N21!! #2

F 12
1

bmc2
H ~5N13!~N21!18N (

k51

N21

(
l 5k11

N21
~ l 2k!

l ~N2k!

8N
J G

5

expF 2bMc22
3~N21!

2
ln~bmc2!2H ~5N13!~N21!18N (

k51

N21

(
l 5k11

N21
~ l 2k!

~N2k!

8Nbmc2
J G

AN~A2pG/c3!~N21!@~N21!! #2
, ~62!
r. tem
m-

n,
which is the partition function to lowest relativistic orde
The average energy is

^E&52
]

]b
ln Z5Mc21

3

2
~N21!b21

2H ~5N13!~N21!18N (
k51

N21

(
l 5k11

N21
~ l 2k!

l ~N2k!

8Mc2
J b22,

~63!

to the relevant order inc22. The relativistic correction grows
quadratically withN ~for fixed M5Nm! and is negative.
02612
Hence the average energy of a relativistic gravitating sys
is lower than its nonrelativistic counterpart at the same te
perature.

B. The single-particle distribution function

Consider next the one-particle distribution functio
which is

f c
R~p,z!5

1

N (
n51

N

f cn
R ~p,z!, ~64!

where
f cn
R ~p,z!5

e2bMc2

ZN! E dzd~ z̄!expS 22pGbm2(
a.b

N

ur abu D d~z2zn!E dk

2p E dp expS ik (
a51

N

pa2b (
a51

N pa
2

2mD
3S 12

b

c2 HRD d~p2pn!

5
c2bMc2

Z E
2`

`

duNE
0

`

du1E
0

`

du2¯E
0

`

duN21 d~uN!expS 22pGbm2 (
l 51

N21

l ~N2 l !ul D
3dS z2uN1

1

N (
l 51

N21

Dn,lul D ucn~p,z!

5
e2bMc2

Z E
0

`

du1¯E
0

`

duN21 expS 22pGbm2 (
l 51

N21

Clul D dS z1
1

N (
l 51

N21

Dn,lul D ucn~p,z!, ~65!

in which
8-9
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ucn~p,z!5E dk

2p E dp expS ik (
a51

N

pa2b (
a51

N pa
2

2mD S 12
b

c2 HRD d~p2pn!, ~66!

and

Cl5 l ~N2 l !, Dn,l5H ~N2 l !, n< l

2 l , n. l ,
~67!

where Eq.~53! has been used to express

zn5uN1
1

N (
l 51

N21

lul2 (
l 5n

N21

ul5uN2
1

N (
l 51

N21

Dn,lul . ~68!

Evaluation ofucn(p,z) is somewhat lengthy, and so we relegate its computation to the Appendix. We obtain

ucn~p,z!5
1

AN21
expS 2

Nbp2

2m~N21! D S 2pm

b D ~N22!/2H S 12
bm~pGm!2

c2

3 (
n51

N

(
b51

N

(
c51

N

@ ur abuur acu2r abr ac# D 1
1

2bmc2 Fb2p4N~N223N13!

~2m!2~N21!3 1
3bp2~N22!

2m~N21!2 1
3~N22!2

4~N21! G
1S 2pmG

c2 D F2
1

2 (
a51

N

(
b51

N

ur abu2S N2bp2

2m~N21!22
N

2~N21! D S (
c51

N

ur cnu D G , ~69!

or alternatively, in terms of theu variables

ucn~p,u!5
1

AN21
expS 2

Nbp2

2m~N21! D S 2pm

b D ~N22!/2H S 12
4bm~pGm!2

c2 (
k51

N22

(
l 5k11

N21

~N2 l !~ l 2k!kulukD
1

1

2bmc2 Fb2p4N~N223N13!

~2m!2~N21!3 1
3bp2~N22!

2m~N21!2 1
3~N22!2

4~N21! G
2S 2pmG

c2 D F (
l 51

N21

l ~N2 l !ul1S N2bp2

2m~N21!22
N

2~N21! D S (
s51

n21

sus1 (
s5n

N21

~N2s!usD G . ~70!

Now consider Eq.~65!, which can be rewritten as

f cn
R ~p,z!5

e2bMc2

Z E dk

2p E du expS 2 ikz2lb (
l 51

N21

~Cl1 iaDnl!ul D ucn~p,u!, ~71!

where

l52pGm2, a5
k

Nbl
. ~72!

The integration now involves straightforward integrations over theu variables, after which an evaluation of thek integral using
Jordan’s lemma must be performed. This involves some rather tedious manipulations which we describe in the Appen
final result is
026128-10



STATISTICAL MECHANICS OF RELATIVISTIC ONE- . . . PHYSICAL REVIEW E 65 026128
f cn~p,z!5
~2pGm2!~Nb!3/2

A2pm~N21!
expF 1

bmc2 H ~5N13!~N21!

8N
1 (

k51

N21

(
l 5k11

N21
~ l 2k!

l ~N2k!J G
3 (

l 51

N21 FH Al
NF11

1

2bmc2 S b2p4@11~N21!3#

~2m!2~N21!3 1
3~N22!bp2

2m~N21!2 1
3~N22!2

4~N21! D G
2

1

bmc2 $Bl
N2Al

N@122N~bpGm2!l uzu#%1
2

bmc2 S N

2~N21!
2

bp2

2m F N2

~N21!2G D
3FCl

N2
1

l
Al

N@122N~bpGm2!l uzu#G2
1

bmc2 $Dl
N1Kl

N@122N~bpGm2!l uzu#%J
3expS 2

Nbp2

2m~N21!
22pGNbm2l uzu D G, ~73!
e
y

t

the
ng
at a
y
the
ve
as-
ical
out

ced

nt
the
whereAl
N, Bl

N, Cl
N, Dl

N, andKl
N are defined in Sec. 4 of th

Appendix. Integration overp yields the canonical densit
distribution function

rc~z!5E
2`

`

dp fcn~p,z!

5~2pGm2Nb!expF 1

bmc2 H ~5N13!~N21!

8N

1 (
k51

N21

(
l 5k11

N21
~ l 2k!

l ~N2k!J G
3 (

l 51

N21 H Al
N1

1

bmc2 S 3

8

~N21!2

N
Al

N2Bl
N2Dl

ND
1

1

bmc2 @Al
N2Kl

N#~122pGm2Nb l uzu!J
3exp~22pGm2Nb l uzu!, ~74!

whereas integration overz yields the canonical momentum
distribution function

qcn~p!5E
2`

`

dz fcn~p,z!

5A ~Nb!

2pm~N21!
expF2

Nbp2

2m~N21!G
3F11

1

bmc2 S Nb2p4~N223N13!

8m2~N21!3

2
bp2~4N227N16!

4m~N21!2 1
5N~N21!13

8N~N21! D G .
~75!

From the results in the Appendix, it can be shown tha
02612
(
l 51

N21
1

l
Al

N5
1

2
, (

l 51

N21
1

l
Bl

N5
1

2
~N21!,

(
l 51

N21
1

l
Cl

N5
~N21!

N
,

(
l 51

N21
1

l
Dl

N5
1

2 (
k51

N21

(
l 5k11

N21
~ l 2k!

l ~N2k!
, ~76!

which can be used to show that

E
2`

`

dzrc~z!51 and E
2`

`

dp qcn~p!51. ~77!

We also have the relations

(
l 51

N21

Al
N5

1

2

N21

2N23
, (

l 51

N21

Bl
N5

1

2

~N21!2

2N23
, ~78!

the first of which was demonstrated by Rybicki@1#.

V. THE MICROCANONICAL ENSEMBLE

The results for the canonical ensemble obtained in
previous section are for a system of relativistic gravitati
particles coupled to a heat bath that keeps the system
constant temperatureT5b21. In such a situation the energ
of the system is ill defined, and undergoes fluctuations of
orderkT. An isolated system, on the other hand, would ha
its total energy conserved, and this is the more realistic
trophysical case. This entails usage of the microcanon
ensemble, in which phase space integrations are carried
by constraining the total energy to beE. The weighting func-
tion e2bH in the phase space integral is, therefore, repla
with d(E2H).

Fortunately it is straightforward to compute the releva
microcanonical quantities from the canonical ones. Using
same reasoning that led to Eq.~42!, the microcanonical
single-particle distribution function is
8-11
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f mc8R~p,z!5
1

VN! E E dp dzd~ p̄!d~ z̄!d~E2H !N21

3(
a

d~z2za!d~p2pa!, ~79!

where

V5
1

N! E E dp dzd~ p̄!d~ z̄!d~E2H !. ~80!

Note thatV andZ are related by the Laplace transform

Z5E
0

`

dE e2bHV~E!, ~81!
02612
V5
1

2p i EC
db ebEZ~b!, ~82!

where the contourC in the latter integral extends from2 i`
to 1 i` to the right of all singularities. Using the gener
result that

~w!1
z21

G~z!
5

1

2p i EC
db ebwb2z where ~w!15H w, w>0

0, w,0,

~83!

it is straightforward to obtain
V5
~2pm!~N21!/2~E2Mc2!~3N25!/2

AN~pGm2!N21@~N21!! #2GX32 ~N21! C expF 2
~E2Mc2!

Mc2
H ~5N13!~N21!18N (

k51

N21

(
l 5k11

N21
~ l 2k!

l ~N2k!

12~N21!
J G ,

~84!

to leading order in 1/c.
Similarly using Eq.~83! in Eq. ~79!, we have

V f mc8R~p,z!5
1

2p i EC
db eb«@Zf cn

R ~p,z!#. ~85!

Using Eqs.~62! and ~73! we have

f cn~p,z!5
~2pGm2!~Nb!3/2

A2pm~N21!
expF 1

bmc2 H ~5N13!~N21!

8N
1 (

k51

N21

(
l 5k11

N21
~ l 2k!

l ~N2k!J G
3 (

l 51

N21 F H Al
NX11

1

2bmc2 S b2p4@11~N21!3#

~2m!2~N21!3 1
3~N22!bp2

2m~N21!2 1
3~N22!2

4~N21! D C

2
1

bmc2 $Bl
N2Al

N@122N~bpGm2!l uzu#%1
2

bmc2 S N

2~N21!
2

bp2

2m F N2

~N21!2G D

3FCl
N2

1

l
Al

N@122N~bpGm2!l uzu#G2
1

bmc2 $Dl
N1Kl

N@122N~bpGm2!l uzu#%J
3expS Nbp2

2m~N21!
22pGNbm2l uzu D G, ~86!
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f mc8R~p,z!5
2pGm2

A2pm~N21!
S N

~E2Mc2! D
3/2GX32 ~N21! C

GX32 ~N22! C expF ~E2Mc2!

Mc2
H ~5N13!~N21!18N (

k51

N21

(
j 5k11

N21
~ j 2k!

j ~N2k!

12~N21!
J G

3 (
l 51

N21 HFAl
N1S Al

N

mc2 F 3p2~N22!

4m~N21!2G2

Cl
N2

1

l
Al

N

mc2 F 2N2p2

2m~N21!2G D GY1
3N/224

1H 2N~pGm2!uzu
mc2 FAl

NS N

~N21!
2 l D1 lK l

NG J Y1
3N/224

1

S 3

2
N24D

~E2Mc2!

Al
N

2mc2 Fp4N~N223N13!

~2m!2~N21!3 2
2p2

m S 2N3pGm2uzu
~N21!2 D GY1

3N/225

1
~E2Mc2!

S 3

2
N23Dmc2

S Al
NF3~N22!2

8~N21!
11G2Bl

N1
N~Cl

N2 lAl
N!

~N21!
2Dl

N2Kl
NDY1

3N/223J, ~87!

as the expression for the relativistic microcanonical partition function, valid toO(1/c2), where

Y~p,z![12
Np2

2m~N21!~E2Mc2!
2

2NpGm2

~E2Mc2!
l uzu. ~88!

Employing the expressions

E
21

1

dy~12y2!g5Ap
G~g11!

GS g1
3

2D , ~89!

E
21

1

dy y2~12y2!g5Ap
G~g11!

2GS g1
5

2D , ~90!

E
21

1

dy y4~12y2!g5Ap
3G~g11!

4GS g1
7

2D , ~91!

the density distribution is

rmc~z!5E
2`

`

dp fmc8R~p,z!

5S 2NpGm2

~E2Mc2! DexpF ~E2Mc2!

Mc2
H ~5N13!~N21!18N (

k51

N21

(
j 5k11

N21
~ j 2k!

j ~N2k!

12~N21!
J G

3 (
l 51

N21 HS 3N25

2 D FAl
N1

2~pGM2!uzu
Mc2 ~2 lAl

N1 lK l
N!G@Y~0,z!#1

3N/227/2
026128-13
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1S ~E2Mc2!

Mc2 D @Y~0,z!#1
3N/225/2FH 2S Cl

N2
1

l
Al

ND F N2

~N21!G J 1Al
NF3~N223N13!

8~N21!
1

3~N22!

4~N21!
1

3N~N22!2

8~N21!
1NG

1S 2NBl
N1

N2S Cl
N2

1

l
Al

ND
~N21!

2N~Dl
N1Kl

N!D GJ
5S 2NpGm2

~E2Mc2! DexpF ~E2Mc2!

Mc2
H ~5N13!~N21!18N (

k51

N21

(
j 5k11

N21
~ j 2k!

j ~N2k!

12~N21!
J G

3 (
l 51

N21 H S 3N25

2 D FAl
N2

2~pCM2!l uzu
Mc2 ~Al

N2Kl
N!G@Y~0,z!#1

3N/227/2

1S ~E2Mc2!

Mc2 D @Y~0,z!#1
3N/225/2F S 3~N21!2

8 DAl
N2N~Bl

N2Al
N!2N~Dl

N1Kl
N!G J . ~92!

The normalization of the density*2`
` dzrmc(z)51 implies

2 (
l 51

N21 H Al
N

l
1S ~E2Mc2!

Mc2 D FAl
N

l S ~N21!

4 D2
2NBl

N

3~N21!l
2

2N

3~N21!

Dl
N

l G J

5expF 2
~E2Mc2!

Mc2
H ~5N13!~N21!18N (

k51

N21

(
j 5k11

N21
~ j 2k!

j ~N2k!

12~N21!
J G , ~93!

which, using Eq.~76!, is easily shown to be satisfied to first order inz[(E2Mc2)/Mc2, where the latter quantity is th
dimensionless fraction of excess energy above the total rest mass.

The momentum distribution is

qmc~p!5E
2`

`

dz fmc8R~p,z!5S N

2pm~N21!~E2Mc2! D
1/2GX32 ~N21! C

GX32 N22C
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(
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J G
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5S N

2pm~N21!~E2Mc2! D
1/2 GS 3

2
~N21! D

GS 3

2
N22D expF ~E2Mc2!

Mc2
H ~5N13!~N21!18N (

k51

N21

(
j 5k11

N21
~ j 2k!

j ~N2k!

12~N21!
J G

3H F12
N

Mc2 S p2

4m F8N2211N16
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(
t5s11
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3N/222J . ~94!

It is straightforward to show that*2`
` dp qmc(p)51 from Eqs.~89!–~91! to first order inz[(E2Mc2)/Mc2.

VI. THE LARGE- N LIMIT

For statistical systems~such as those of interest in stellar dynamics!, the large-N limit is of considerable physical interes
This is the limit in which the total energyE and total massM5Nm are fixed. In the nonrelativistic case, the single-parti
distribution function approaches the isothermal solution of the Vlasov equations in the large-N limit @1#. However, the
relativistic case is somewhat more subtle, since the expressions we have obtained are valid only if the speed o
sufficiently large relative to other quantities of the same dimension, and asN becomes large we must ensure that t
approximation remains valid.

In order to investigate the large-N limit it is necessary to rewrite all quantities in terms ofE, M, andN. As in Ref.@1#, we
adopt the dimensionless variables

h[
p

mV
, j[

z

L
, ~95!

where

L[
2~E2Mc2!

3pGM2 5
2zc2

3pGM
, V2[

4~E2Mc2!

3M
5

4zc2

3
~96!

are the characteristic length and velocity scales of the system. The scaled distributions functions are corresponding

r* ~j![Lr~Lj!, q* ~h![mVq~mVh!, f 8* R~h,j![mVL f8R~mVh,Lj!, ~97!

so that

E E dh dj f 8* R~h,j!5E dj r* ~j!5E dh q* ~h!51. ~98!

Consider first the partition function~62!, which can be rewritten as

Z5

expF 2bMc22
1

bMc2
H ~5N13!~N21!18N (

k51

N21

(
l 5k11

N21
~ l 2k!

l ~N2k!

8
J G

AN~A2pG/c3!~N21!@~N21!! #2 S N

bMc2D 3~N21!/2

. ~99!
be-

ial

e as
The approximation~47! is valid provided

b.

~5N13!~N21!18N (
k51

N21

(
l 5k11

N21
~ l 2k!

l ~N2k!

8Mc2 ,

~100!
02612
which sets an upper bound on the thermal energykT5b21

of the system for a given value ofN. For fixed Mc2 the
relativistic corrections are valid only as the temperature
comes vanishingly small in the limit of largeN. The expo-
nential approximation is slightly better than the polynom
one because of the positivity of the partition function.

Consider next the average energy in the canonical cas
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given by Eq.~63!, which we rewrite as

^z&5
3

2
~N21!

1

bMc2

2H ~5N13!~N21!18N (
k51

N21

(
l 5k11

N21
~ l 2k!

l ~N2k!

8
J

3S 1

bMc2D 2

, ~101!

wherez[(E2Mc2)/Mc2, as before. When the thermal e
ergy kT5b21 of the system is sufficiently small relative t
its rest energyMc2, the expression for the average ener
^z& does not differ much from the nonrelativistic value giv
by its first term. As the thermal energy grows~i.e., asb
decreases! the value of^z& increases more slowly than it
nonrelativistic counterpart, reaching a maximum when

FIG. 1. Maximum value of the average relativistic energy
units of Mc2 as a function ofN.
02612
b5

~5N13!~N21!18N (
k51

N21

(
l 5k11

N21
~ l 2k!

l ~N2k!

6~N21!Mc2 [bm ,

~102!

after which the average energy decreases with decreasinb,
becoming negative whenb5 1

2 bm . As N becomes large,
bm→@ 7

2 2(2p2/9)#(N/Mc2). At b5bm the average energy
has half the value of its nonrelativistic counterpart. In Fig
we plot the maximum value of̂z& as a function ofN. The
curve asymptotes to the constant value of̂z&
50.573 940 872 asN→`.

Of course the relativistic expansion~44! breaks down well
before b reaches this point. In Fig. 2 we plot the avera
energŷ z& as a function ofkT for N510. The relativistic case
is clearly distinguishable from its nonrelativistic counterp
oncekT/Mc2.0.02. However, the upper bound on the the
mal energy iskT/Mc2,0.0117 forN510. In Fig. 3 we plot
the average energy over the allowed range ofkT illustrating
that the distinction between the two cases is about 8%
most. ForN51000 the maximum difference between th
two cases is less than one part in a thousand over the allo
range ofkT.

In the canonical case we take the energyE to be the fixed
total average energy as given by Eq.~63!. Solving this equa-
tion for the inverse temperatureb yields

FIG. 2. Average energŷz& as a function ofkT for N510 for the
nonrelativistic and relativistic cases. Axes are in units ofMc2.
b5

18~N21!2F ~5N13!1
8N

~N21! (
k51

N21

(
l 5k11

N21
~ l 2k!

l ~N2 l !Gz

12~E2Mc2!

5
aN

Mc2z S 12
bN

aN
2 z D , ~103!

where

aN5
3

2
~N21!,

bN5
1

8 S ~5N13!~N21!18N (
k51

N21

(
j 5k11

N21
~ j 2k!

j ~N2k!D , ~104!
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are defined for convenience. The limit~100! implies that

1.S bN

aN
2 1

bN

aN
D z[

z

zmax
→S 7

4
2

p2

9 DNz, ~105!

where the latter limit holds for largeN. Since the exponential forms a better approximation than the polynomial one, the
of zmax is probably a bit larger than what is given in Eq.~105!, although it is not clear how much. We obtain
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N2

1

l
Al

NF12
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3N S 12
bN

aN
2 z D l ujuG J

2
Nz

aN
H Dl

N1Kl
NF12

4aN

3N S 12
bN

aN
2 z D l ujuG J S 12

bN

aN
2 z D 21JexpF2S 12

bN

aN
2 z D S h21

4aN

3N
l uju D G G, ~106!
le

f ri-
which is valid only to first order inz.
The canonical density~74! becomes

rc* ~j!5Lrc~Lj!5
2zc2

3pGM
rc~Lj!

5
4aN

3N
expFbN

aN
zS 12

bN

aN
2 z D 21G (

l 51

N21 H Al
NS 12

bN

aN
2 z D

1
Nz

aN
S 3

8

~N21!2

N
Al

N2Bl
N2Dl

ND J 1
Nz

aN
@Al

N2Kl
N#

FIG. 3. Average energŷz& for N510 over the allowed range o
kT.
02612
3F12
4aN

3N S 12
bN

aN
2 z D l ujuG J expF22~121/N!

3S 12
bN

aN
2 z D l ujuG . ~107!

We plot in Fig. 4 the nonrelativistic canonical single-partic

FIG. 4. The nonrelativistic canonical density function for va
ous values ofN.
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density functionrc* (j,z50) for various values ofN, recov-
ering the results of Rybicki@1#. With the exception ofN
52, the central density grows with increasingN and the
distribution becomes slightly more sharply peaked. It can
shown that asN→` the canonical densityrc* (j,z50)
→ 1

2 sech2 j, and the single-particle distribution function a
proaches the isothermal solution of the Vlasov equation@1#.

In Figs. 5–8 we plot the relativistic canonical functio
rc* (j;z) for differing values ofN. As is clear from these
figures, relativistic effects significantly enhance the cen
density by as much as 30% depending on the magnitudez.
Even forz50.3, the central density is larger than its value
1/2 in the nonrelativistic large-N limit. While higher-order

FIG. 6. The canonical density function forN55 with curves
that correspond toz50, 0.1, 0.2, 0.3, andzmax'0.29.

FIG. 5. The canonical density function forN53 for various
values of the relativistic parameterz. The nonrelativistic curve is
labeledz50, and followed by curves forz50.1, z50.3, andz
50.5, respectively. Here Eq.~105! yieldszmax'0.43 as the limit for
which the relativistic expression is valid.
02612
e

l

f

corrections inz will modify this, the general trend is clea
The falloff of the relativistic density functions is also mo
rapid than in the nonrelativistic case.

Unfortunately there is no closed-form expression for t
terms Kl

N and Dl
N and so it is not possible to evaluate a

explicit expression for eitherrc* (j) or rmc* (j) in the largeN
limit. Instead these quantities must be computed using s
bolic algebra; forN.20 this involves the factorization o
thousands of terms, and computer memory limitations m
this a prohibitive task. However, the large-N behavior should
not be too different from theN520 case, at least for sma
values ofz. Figures 9 and 10 plot the density for differentN
at two different values ofz.

The canonical momentum distribution function~75! is
straightforwardly evaluated to be

FIG. 8. The canonical density function forN520 with curves
that correspond toz50, 0.1, 0.2, 0.3, andzmax'0.15.

FIG. 7. The canonical density function forN510 with curves
that correspond toz50, 0.1, 0.2, 0.3, andzmax'0.15.
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qcn* ~h!5mVqcn~sVh!

5mA4zc2

3
qcn~sVh!

5
1

Ap
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2 z D 1/2

expF2h2S 12
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2 z D G

3H 11
Nz
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~N223N13!

2N~N21! S 12
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2 z Dh4
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Nz
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F2

h2~4N227N16!

2N~N21!
1

5N~N21!13

8N~N21!

3S 12
bN

aN
2 z D 21G J , ~108!

where each of~107! and~108! are also valid to first order in
z. Here we can easily take the large-N limit, which is

FIG. 9. The canonical density for different values ofN at
z50.1.
02612
qc* ~h!→ 1

Ap
S 11

z

54
@18h429h229

22p2~2h221!# De2h2
, ~109!

to leading order inz.
We plot in Figs. 11–13 the behavior of the canonical m

mentum density as a function of the rescaled momentumh
for differing values ofN. The central momentum densit
increases with increasingz, and falls off more rapidly than in
the nonrelativistic case.

However, forh.2, the momentum density grows relativ
to its nonrelativistic counterpart, overtaking this value f
large enoughh. The relative growth is exponential, althoug
the overall momentum density is exponentially damped
any z. As N increases, the differences between the nonre
tivistic and relativistic cases become less pronounced,
though the basic features remain the same even in the
that N→`.

The microcanonical results are

FIG. 10. The canonical density for different values ofN at
z50.3.
FIG. 11. The canonical momentum density as a function ofh for N53. On the left-hand side is the behavior ofuc* (h;z) and on the
right-hand side is its behavior relative to the nonrelativistic densityuc* (h;0). Thecurves correspond toz50, 0.1, 0.2, 0.3.
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FIG. 12. The canonical momentum density as a function ofh for N530. Notation is as in Fig 11.
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FIG. 13. The canonical momentum density as a function ofh for N5`. Notation is as in Fig. 11.
it

n
ts

i
s.
ts
0%
where each of Eqs.~110!, ~111!, and ~112! are valid to first
order inz. As N→` we have

qmc* ~h!→ 1

Ap
S 11

z

54
@18h4281h2127

22p2~2h221!# De2h2
. ~113!

Note that this differs from the canonical momentum dens
unlessz50.

The microcanonical density functionrmc* (j;z) for differ-
ing values ofN is plotted in Figs. 14–17. ForN53, the
microcanonical density is uniform untilj59/8, after which it
falls linearly to zero. Forj,9/8, at most two particles ca
contribute to the density; in this region relativistic effec
enhance their contribution. However, forj.9/8, at most one
particle can contribute, and relativistic effects suppress
contribution untilj59/4, after which the density vanishe
For larger N, as in the canonical case, relativistic effec
significantly enhance the central density by as much as 3
depending on the size ofz. Their falloff is more rapid, and
02612
y

ts

,

FIG. 14. The microcanonical density function forN53 for vari-
ous values of the relativistic parameterz. The nonrelativistic curve
is labeledz50, followed by curves corresponding toz50.1, z
50.2, andz50.3.
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for sufficiently largej the nonrelativistic density distribution
is larger. AsN increases, the density becomes more sha
peaked and the contrasts between the nonrelativistic and
tivistic cases become less pronounced.

In Figs. 18 and 19 we plot the microcanonical dens
distribution for increasing values ofN and fixedz.

We plot the microcanonical momentum distributions
Figs. 20–22. The results are qualitatively similar to the
nonical case, although the actual functional forms differ.

For smallN, the relativistic approximation breaks dow
even forz as small as 0.3, and the momentum distribut
function goes negative, as shown in Fig. 20. However,
larger N the momentum distribution is positive for allz
<0.3, for example as in Fig. 21. The relativistic densities

FIG. 15. The microcanonical density function forN57 for vari-
ous values of the relativistic paramterz. Notation is as in Fig. 14.

FIG. 16. The microcanonical density function forN510
for various values of the relativistic parameterz. Notation is as in
Fig. 14.
02612
ly
la-

-

r

e

more sharply peaked and for sufficiently large moment
parameterh are larger than their nonrelativistic counterpar

VII. CLOSING REMARKS

We have carried out an analysis of the statistical beha
of a ROGS to leading order in 1/c. The qualitative behavior
of the ROGS as compared to its nonrelativistic OGS co
terpart@1# is clear. At a given energy, the ROGS temperatu
is smaller than the OGS temperature; relativistic effects c
the gas down. The one-particle distribution functions beco
more sharply peaked in each case with increasingN. For a
given N, the ROGS density functions become more shar
peaked as the relativistic parameterz increases. This effect is
commensurate with that observed in the exact two-bo
case, in which the maximal proper separation of a pair
particles is smaller in the relativistic system that in its no

FIG. 17. The microcanonical density function forN520
for various values of the relativistic parameterz. Notation is as in
Fig. 14.

FIG. 18. The microcanonical density for different values ofN at
z50.1.
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relativistic counterpart at the same energy@8,9#. Relativistic
gravity introduces a quadratic spatial term in the potent
which makes the attractive force more powerful for larg
distance at the same energy.

For both canonical and microcanonical distribution fun
tions, rOGS.rROGS for sufficiently large position paramete

FIG. 19. The microcanonical density for different values ofN at
z50.3.
02612
l,
r

-

j. However, for the momentum densities, this is not tru
Although qOGS.qROGS for intermediate values of the mo
mentum parameterh, onceh becomes large enough this in
equality is reversed. Again, this behavior is presumably d
to quadratic character of the ROGS potential relative to
linear OGS counterpart in the former case, and from thep4

corrections in the Hamiltonian~46! in the latter situation.
This work can be extended in several directions. It wou

be straightforward to extend these results to the charged
cosmological systems considered in Refs.@8,9# to see what
effects these impose on the distribution functions. Extensi
to unequal masses would also be interesting, although c
siderably more difficult. It would be very interesting to g
beyond leading order in 1/c to investigate nonperturbativ
effects of the ROGS.

Further understanding the ROGS will undoubtedly requ
numerical experiments for various values ofN. The equa-
tions of motion yield quartic~as opposed to quadratic! time
dependence of the position variables~to leading order in
1/c!, and so can be straightforwardly~although somewha
tediously! integrated to investigate its equilibrium and equ
partion properties. Work on this is in progress.
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APPENDIX

1. The Gaussian integrations

The following Gaussian integrations were used to obtain Eq.~51!:

E dk

2p E dp expS ik (
a51

N

pa2b (
a51

N pa
2

2mD 5E dk

2p )
a51

N E dpa e2b(pa
2/2m)1 ikpa

5S 2m

b D N/2S 2m

b D 21/2E dk̃

2p )
a51

N E dp̃a e2 p̃a
2
1 i k̃ p̃a

5S 2m

b D ~N21!/2

pN/2E dk̃

2p
expS 2

Nk̃2

4
D

5
1

AN
S 2pm

b D ~N21!/2

, ~A1!

FIG. 20. The microcanonica
momentum density as a functio
of h for N53. On the left-hand
side is the behavior ofumc* (h;z)
and on the right-hand side i
its behavior relative to the nonrel
ativistic density uc* (h;0). The
curves correspond toz50, 0.1,
0.2, and 0.3.
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FIG. 21. The microcanonical momentum de
sity as a function ofh for N5100. Notation is as
in Fig. 20.

FIG. 22. The microcanonical momentum de
sity as a function ofh for N5`. Notation is as in
Fig. 20.
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2. The u„p,z… term

This term is
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where Eq.~57! was used.
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b. The l3 part
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c. The full expression forucn„p,z…
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or alternatively
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When thel’s are all equal to unity, this is
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4. An evaluation of f cn„p,z…
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and we must divide byN and sum over all values ofn to
obtain the correct result.

For example,
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This function has single poles ata5 in, wheren is an integer taking its values between2N and N, except forN50. Its
residues are
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for the leading nonrelativistic term, where
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whereC(x)5(d/dx)ln G(x) is the digamma function. This
function on the right-hand side of Eq.~A33! has a combina-
tion of single and double poles, each located ata5 in, where
n is an integer taking its values between2N andN, except
for N50. Writing
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where the term in curly brackets contains the double pol
a5 in. Hence
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a21n2J G .

~A34!

The residue from the double pole ata5 in is

2 i
d

dx F2n2x~21!n exp~Nblxz!

G~N2x!G~N1x!~x1n! G
x5n

5
2 in~21!n exp~Nblnz!

2G~N2n!G~N1n!

3$112Nblnz12n@C~N2n!2C~N1n!#%,

~A35!

providedz,0, and so the total residue ata5 in from Eq.
~A34! is

in~21!n exp~Nblnz!

G~N2n!G~N1n! FN2
5

2
12n2 (

sÞn

N21 S l

s22n2D
1n@C~N1n!2C~N2n!#2~11Nblnz!G

[
2 i exp~Nblnz!

@G~N!#2 @Bn
N2An

N~11Nblnz!#, ~A36!

giving finally
1

N (
n51

N E dk

2p E du expS 2 ikz2lb (
l 51

N21

~Cl1 iaDnl!ul D (
s51

N21

s~N2s!us

5
2NbpGm2

~2pGbm2!N@G~N!u2 (
l 51

N21

$Bl
N2Al

N@122N~bpGm2!l uzu#%exp@22N~bpGm2!l uzu#, ~A37!

where

Bn
N5

n~21!n11@G~N!#u2

G~N2n!G~N1n! FN2
5

2
12n2 (

sÞn

N21 S 1

s22n2D1n@C~N1n!2C~N2n!#G . ~A38!

Using the relation

(
c51

N

ur cnu5 (
l 51

n21

lul1 (
l 5n

N21

~N2 l !ul , ~A39!

we find

1

N (
n51

N E du expS 2lb (
l 51

N21

~Cl1 iaDnl!ul D (
s51

N

ur snu

5
1

N (
n51

N S (
s51

n21

sln,s
1 1 (

s5n

N21

~N2s!I n,s
1 D

5
1

N~2pGbm2!N (
n51

N F (
s51

n21
1

~N2s2 ia!
1 (

s5n

N21
1

~s1 ia!G S )
l 51

N21
1

Cl1 iaDnl
D

8-31



R. B. MANN AND P. CHAK PHYSICAL REVIEW E65 026128
5
1

N~2pGbm2!N (
n51

N H @C~12N1 ia!2C~n2N1 ia!1C~N1 ia!2C~n1 ia!#

3S 1

~n21!! ~N2n!!

G~N2n112 ia!

G~N2 ia!

G~n1 ia!

G~N1 ia! D J
5

1

N~2pGbm2!N (
n51

N H @C~N2 ia!1C~N1 ia!2C~N2n112 ia!2C~n1 ia!#

3S 1

~n21!! ~N2n!!

G~N2n112 ia!

G~N2 ia!

G~n1 ia!

G~N1 ia! D J
5

1

N~2pGbm2!N (
n51

N F @C~N2 ia!1C~N1 ia!#S 1

~n21!! ~N2n!!

G~N2n112 ia!

G~N2 ia!

G~n1 ia!

G~N1 ia! D
2

d

ds S 1

~n21!! ~N2n!!

G~N2n112 ia1s!

G~N2 ia!

G~n1 ia1s!

G~N1 ia! D G
s50

5
1

~2pGbm2!N @C~N2 ia!1C~N1 ia!#
G~12 ia!

G~N2 ia!

G~11 ia!

G~N1 ia!

2F 1

G~N11!

d

ds S G~N1112s!G~12 ia1s1s!G~11 ia1s!

G~212s!G~N2 ia!G~N1 ia! D G
s50

5
1

~2pGbm2!N

G~12 ia!

G~N2 ia!

G~11 ia!

G~N1 ia!
@C~N2 ia!1C~N1 ia!2C~12 ia!2C~11 ia!22C~N11!12C~2!#

5
1

~2pGbm2!N

G~12 ia!

G~N2 ia!

G~11 ia!

G~N1 ia! F (
s51

N21
1

s2 ia
1 (

s51

N21
1

s1 ia
22 (

s51

N21
1

s11G
5

1

~2pGbm2!N

G~12 ia!

G~N2 ia!

G~11 ia!

G~N1 ia! F (
sÞn

N21
1

s2 ia
1 (

sÞn

N21
1

s1 ia
22 (

s51

N21
1

s11
1H 2n

a21n2J G , ~A40!

where the curly bracket contains the double pole ata5 in, and all other poles are in the same locations as before.
So we obtain

1

N (
n51

N E dk

2p E du expS 2 ikz2lb (
l 51

N21

~Cl1 iaDnl!ul D S (
l 51

n21

lul1 (
l 5n

N21

~N2 l !ul D
5

Nbl

~2pGbm2!N E da

2p
e2 iaNblz

G~12 ia!

G~N2 ia!

G~11 ia!

G~N1 ia!F (sÞn

N21
1

s2 ia
1 (

sÞn

N21
1

s1 ia
22 (

s51

N21
1

s11
1H 2n

a21n2J G .

~A41!

The total residue ata5 in from Eq. ~A41! is

in~21!neNblnz

G~N2n!G~N1n! F2 (
sÞn

N21 S s

s22n2D22 (
s51

N21
1

s11
1

1

2n
1@C~N1n!2C~N2n!#2

11Nblnz

n G
5

2 i exp~Nblnz!

@G~N!#2 S Cn
N2

1

n
An

N~11Nblnz! D , ~A42!

providedz,0 ~otherwise it vanishes! and so
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1

N (
n51

N E dk

2p E du expS 2 ikz2lb (
l 51

N21

~Cl1 iaDnl!ul D S (
l 51

n21

lul1 (
l 5n

N21

~N2 l !ul D
5

2NbpGm2

~2pGbm2!N@G~N!#2 (
l 51

N21 FCl
N2

1

l
Al

N@122N~bpGm2!l uzu#Gexp@22N~bpGm2!l uzu#, ~A43!

where

Cn
N5

n~21!n11@G~N!#2

G~N2n!G~N1n! F2 (
sÞn

N21 S s

s22n2D22 (
s51

N21
1

s11
1

1

2n
1@C~N1n!2C~N2n!#G . ~A44!

Finally, we consider the expression

1

N (
n51

N E du expS 2lb (
l 51

N21

~Cl1 iaDnl!ul D (
s51

N21

(
t5s11

N21

~N2t !~ t2s!susut

5
1

N (
n51

N

(
s51

N21

(
t5s11

N21

~N2t !~ t2s!sIn,s,t
2

5
1

~2pGbm2!N11

1

N (
n51

N

(
s51

N21

(
t5s11

N21
~ t2s!s

Cs1 iaDn,s

~N2t !

Ct1 iaDnt
)
l 51

N21
l

Cl1 iaDnl
. ~A45!

Interchanging the order of the sums gives

(
n51

N

(
s51

N21

(
t5s11

N21
~ t2s!s

Cs1 iaDns

~N2t !

Ct1 iaDnt
)
l 51

N21
1

Cl1 iaDnl

5 (
s51

N21

(
t5s11

N21

(
n51

N S ~ t2s!s

Cs1 iaDns

~N2t !

Cl1 iaDnt

@G~N!#2

~n21!! ~N2n!!

G~N2n112 ia!

G~N2 ia!

G~n1 ia!

G~N1 ia! D
5

@G~N!#2

G~N1 ia!G~N2 ia! (
s51

N21

(
t5s11

N21 F (
n51

s S ~ t2s!s

~N2s!~ t1 ia!~s1 ia!

G~N2n112 ia!

G~N2n11!

G~n1 ia!

G~n! D
1 (

n5s11

t S ~ t2s!

~N2s2 ia!~ t1 ia!

G~N2n112 ia!

G~N2n11!

G~n1 ia!

G~n! D
1 (

n5t11

N S ~N2t !~ t2s!

t~N2s2 ia!~N2t2 ia!

G~N2n112 ia!

G~N2n11!

G~n1 ia!

G~n! D G . ~A46!

When summed overn, we obtain

1

N (
n51

N

(
s51

N21

(
t5s11

N21
~ t2s!s

Cs1 iaDns

~N2t !

Ct1 iaDnt
)
l 51

N21
1

Cl1 iaDnl
5

(
k51

N21

aka
2k

)
l 51

N21

~a21 l 2!2

, ~A47!

which has double poles and single-pole residues ata56 in for every nonzero value ofn,N. The coefficients of the
polynomial in the numerator are calculable, but we have not found any closed-form expression for them. The tabl
contains results for values up toN510.
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N
( k51

N21
aka

2k

3 2(a221)(a222)

4 4(1802109a2110a4111a6)

5 8(3657623820a2275a411590a61149a8)

6 48(526320011132124a21162455a41170877a6125445a81899a10)

7 288(14559264001635262768a21123441248a4143494899a616982689a81399833a1017163a12)

8 1152(10673498304001638760596688a21149678407480a4134350170141a615098185940a81351491854a10

110505180a121110317a14)

9 41472(1435909773312001103719257351424a2127508922447056a415307728339928a61709200726957a8

152255261172a1011966842318a12135272476a141237469a16)

10 414720(108807366682828800189224919703007488a2125843463092699920a414662765631167688a6

1573351004521465a8142828568506933a1011816855681610a12142140421618a141493478205a16

12266273a18).

Hence we obtain

1

N (
n51

N E du expS 2lb (
l 51

N21

~Cl1 iaDnl!ul D (
s51

N21

(
t5s11

N21

~N21!~ t2s!susut

5
232NbpGm2

~2pGbm2!N11@G~N!#2 (
l 51

N21

$Dl
N1Kl

N@122N~bpGm2!l uzu#%exp@22N~bpGm2!l uzu#, ~A48!

where the coefficientsDl
N andKl

N are determined by the residues given above. These are given in the next two tables

Dl
N N53 N54 N55 N56 N57 N58 N59 N510

l 51 2
1
3

2
1
4

2
2
45

31
144

2117
4200

2
2917
3600

24869
22050

113931
78400

l 52
11
12

209
125

169
90

5599
3087

2
2131
1344

30347
24300

941
1125

601906
1630475

l 53 2
1387
1500

2
9278
5145

2
12781
5488

2
1468
567

2
85427
32400

2
836537
332750

2
3601223
1597200

l 54
72917
123480

2
431581
333396

214607
113400

18987467
8085285

3170471
1197900

407903579
146210350

l 55 2
1005251
3333960

2
22515781
30187080

2
31621187
25874640

2
440479867
263178630

2
4721124703
2292578288

l 56 162182479
1207483200

8830831883
23686076700

2430681577
3582153575

10937730746
10746460725

l 57 2
108510757181
1989630442800

2
7762820713
46056260250

2
22140852323
65502236800

l 58
53405900137

2579150574000
9952938913257

140792964111800

l 59 2
151474036840183

20274186832099200
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Kl
N N53 N54 N55 N56 N57 N58 N59 N510

l 51 2
1
3

2
1
2

2
3
5

2
2
3

2
5
7

2
3
4

2
7
9

2
4
5

l 52 2
5
24

2
1
25

1
10

31
147

67
224

10
27

193
450

289
605

l 53
7
50

2
27
245

43
784

2
11

1512
2

37
540

2
381
3025

2
1297
7260

l 54 2
257
3920

2
829

10584
2

361
5040

2
853

16335
2

551
21780

1153
204490

l 55 2
2761
10584

12431
304920

3163
65340

44893
920205

24587
572572

l 56 2
34541

3659040
2

50012
2760615

2
368191
1431430

2
66629

2147145

l 57
248029

77297220
234797

32207175
274399

22902880

l 58 2
1075190

1030629600
2

1812235
661893232

l 59
6514549

19856796960

Summarizing:

1

N (
n51

N E dk

2p E du expS 2 ikz2lb (
l 51

N21

~Cl1 iaDnl!ul D 5
2NbpGm2

~2pGbm2!N21@G~N!#2 (
l 51

N21

Al
N exp@22N~bpGm2!l uzu# ~A49!

1

N (
n51

N E dk

2p E duS (
s51

N21

s~N2s!usD expS 2 ikz2lb (
l 51

N21

~Cl1 iaDnl!ul D ,

5
2NbpGm2

~2pGbm2!N@G~N!#2 (
l 51

N21

$Bl
N2Al

N@122N~bpGm2!l uzu#%exp@22N~bpGm2!Luzu# ~A50!

1

N (
n51

N E dk

2p E duS (
s51

l 21

sIn,s
1 1 (

s5n

N21

~N2s!I n,s
1 D expS 2 ikz2lb (

l 51

N21

~Cl1 iaDnl!ul D
5

2NbpGm2

~2pGbm2!N@G~N!#2 (
l 51

N21 FCl
N2

1

l
Al

N@122N~bpGm2!l uzu#Gexp@22N~bpGm2!l uzu#, ~A51!

1

N (
n51

N E dk

2p E duS (
s51

N21

(
t5s11

N21

~N2t !~ t2s!susutD expS 2 ikz2lb (
l 51

N21

~Cl1 iaDnl!ul D
5

2NbpGm2

~2pGbm2!N11@G~N!#2 (
l 51

N21

$Dl
N1Kl

N@122N~bpGm2!l uzu#%exp@22N~bpGm2!l uzu#. ~A52!

The final expression for the one-particle distribution function is
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f cn~p,z!5AN~A2pG/c3!~N21!@~N21!! #2S 2pm

b D ~N22!/2 2Nbpm2~bmc2!3~N21!/2

AN21~2pGbm2!N21@G~N!#2

3expF2
1

bmc2 H 3~N21!2

8N
l12

~N21!@l2~N21!1l3#

N
2l4 (

k51

N21

(
l 5k11

N21
~ l 2k!

l ~N2k!J G
3 (

l 51

N21 FH Al
NF11

l1

2bmc2 S b2p4@11~N21!3#

~2m!2~N21!3 1
3~N22!bp2

2m~N21!2 1
3~N22!2

4~N21! D G
1

1

bmc2 S ~l32l2!bp2

m~N21!2 2
@l31~N22!l2#

~N21! D $Bl
N2Al

N@122N~bpGm2!l uzu#%

1
2@2l31~N22!l2#

bmc2 S 1

2~N21!
2

Nbp2

2m F 1

~N21!2G D FCl
N2

1

l
Al

N@122N~bpGm2!l uzu#G
2

l4

bmc2 $Dl
N1Kl

N@122N~bpGm2!l uzu#%J expS 2
Nbp2

2m~N21!
22pGNbm2l uzu D G

5
~2pGm2!~Nb!3/2

A2pm~N21!
expF2

1

bmc2 H 3~N21!2

8N
l12

~N21!@l2~N21!1l3#

N
2l4 (

k51

N21

(
l 5k11

N21
~ l 2k!

l ~N2k!J G
3 (

l 51

N21 FH Al
NF11

l1

2bmc2 S b2p4@11~N21!3#

~2m!2~N21!3 1
3~N22!bp2

2m~N21!2 1
3~N22!2

4~N21! D G
1

1

bmc2 S ~l32l2!bp2

m~N21!2 2
@l31~N22!l2#

~N21! D $Bl
N2Al

N@122N~bpGm2!l uzu#%

1
2@2l31~N22!l2#

bmc2 S 1

2~N21!
2

Nbp2

2m F 1

~N21!2G D FCl
N2

1

l
Al

N@122N~bpGm2!l uzu#G
2

l4

bmc2 $Dl
N1Kl

N@122N~bpGm2!l uzu#%J expS 2
Nbp2

2m~N21!
22pGNbm2l uzu D G. ~A53!

The canonical density distribution function is given by integration off cn(p,z) over p,

rc~z!5E
2`

`

dp fcm~p,z!

5
~2pGm2!~Nb!3/2

A2pm~N21!
A2pm~N21!

Nb

3expF2
1

bmc2 H 3~N21!2

8N
l12

~N21!@l2~N21!1l3#

N
2l4 (

k51

N21

(
l 5k11

N21
~ l 2k!

l ~N2k!J G
3 (

l 51

N21 FH Al
NF11

l1

2bmc2 S 3@11~N21!3#

4N2~N21!
1

3~N22!

2N~N21!
1

3~N22!2

4~N21! D G
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1
1

bmc2 S ~l32l2!

N~N21!
2

@l31~N22!l2#

~N21! D $Bl
N2Al

N@122N~bpGm2!l uzu#%

1
2@2l31~N22!l2#pGm

bmc2 S 1

2~N21!
2F 1

2~N21!2G D FCl
N2

1

l
Al

N@122N~bpGm2!l uzu#G
2

l4

bmc2 $Dl
N1Kl

N@122N~bpGm2!l uzu#%exp~22pGNbm2l uzu!G
5~2pGm2Nb!expF2

1

bmc2 H 3~N21!2

8N
l12

~N21!@l2~N21!1l3#

N
2l4 (

k51

N21

(
l 5k11

N21
l ~N2k!

L~N2k!J G
3 (

l 51

N21 H Al
N1

1

bmc2 F3l1

8

~N21!2

N
Al

N2S @l2~N21!1l3#

N DBl
N2l4Dl

NG
1

1

bmc2 F S @l2~N21!1l3#

N DAl
N2l4Kl

NG@122N~bpGm2!l uzu#J exp~22pGm2Nb l uzu!. ~A54!

The final expressions have alll i51. It is straightforward to show that the coefficientsAl
N andBl

N obey the sum rules

(
l 51

N21

Al
N5

1

2

N21

2N23
, ~A55!

(
l 51

N21

Bl
N5

1

2

~N21!2

2N23
, ~A56!

where Eq.~A55! was previously derived in thec→` limit @1#. Since*2`
` dzrc(z)51, we must have

2 (
l 51

N21
1

l H Al
N1

1

bmc2 F3l1

8

~N21!2

N
Al

N2
2

2 S @l2~N21!1l3#

N DBl
N2l4Dl

NG J
5expF 1

bmc2 H 3~N21!2

8N
l12

~N21!@l2~N21!1l3#

N
2l4 (

k51

N21

(
l 5k11

N21
~ l 2k!

l ~N2k!J G , ~A57!

or alternatively, to the relevant order inc,

(
l 51

N21
1

l
Al

N5
1

2
, ~A58!

(
l 51

N21
1

l
Bl

N5
1

2
~N21!, ~A59!

(
l 51

N21
1

l
Dl

N5
1

2 (
k51

N21

(
l 5k11

N21
~ l 2k!

l ~N2k!
, ~A60!

each of which can be straightforwardly verified. We also can show

(
l 51

N21
1

l
Cl

N5C1
N5

~N21!

N
, ~A61!

(
l 51

`

Cl
N5

p2

12
. ~A62!
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