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Statistical mechanics of relativistic one-dimensional self-gravitating systems
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We consider the statistical mechanics of a general relativistic one-dimensional self-gravitating system. The
system consists dfl particles coupled to lineal gravity and can be considered as a modéreaativistically
interacting sheets of uniform mass. The partition function and one-particle distribution functions are computed
to leading order in I wherec is the speed of light; as—c results for the nonrelativistic one-dimensional
self-gravitating system are recovered. We find that relativistic effects generally cause both position and mo-
mentum distribution functions to become more sharply peaked, and that the temperature of a relativistic gas is
smaller than its nonrelativistic counterpart at the same fixed energy. We consider thi lamigesf our results
and compare this to the nonrelativistic case.
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[. INTRODUCTION tion changed recently when a prescription for obtaining the
Hamiltonian for a relativistic one-dimensional self-
One-dimensional systems Wfparticles mutually interact- gravitating system(ROGS was given by Mann and Ohta
ing through gravitational forces have been of interest in asf4]. This Hamiltonian can be rigorously derived from a gen-
trophysics for more than three decades. While used primarilgrally covariant system coupling relativistic gravity in one
as prototypes for the behavior of gravity in higher dimen-spatial dimensiofii.e., a 1+ 1 dimensional theory of gravity
sions, one-dimensional self-gravitating systd@&S’9 also  [5]) to N point particles. In the nonrelativistic limit, the
conjectured to approximate the behavior of some physicaHamiltonian reduces to that of the OGS. Although not avail-
systems in three spatial dimensions. These include the dwble in closed form, the Hamiltonian can be obtained as a
namics of stars in a direction orthogonal to the plane of aseries expansion in inverse powers of the speed of tghbt
highly flattened galaxy1] and the collisions of flat parallel arbitrary order.
domain wallg[2] (i.e., sheets of stress energhyl) moving in We consider in this paper the one-particle distribution
directions perpendicular to their surfaces. Furthermore, verfunction for the ROGS. Our work here is a natural extension
long lived core-halo structures in the OGS phase space a@ previous work on thé\-body problem in relativistic grav-
known to exist, reminiscent of structures observed in globuity. In three spatial dimensions an exact solution to this prob-
lar clusters, in which a dense massive core in near equiliblem is known for pure Newtonian gravitgnd a series solu-
rium is surrounded by a halo of stars with high kinetic en-tion has been constructed for arbitrai). In the general
ergy that interact only weakly with the cof8]. theory of relativity dissipation of energy in the form of gravi-
The statistical properties of the OGS are particularly in-tational radiation has obstructed progress toward obtaining
triguing. Despite extensive study, many unanswered que®xact solutions to théN-body problem even whei=2.
tions remain. For example, it is not clear if the OGS canHowever, for the ROGS an exact solution to the two-body
attain a true equilibrium state from arbitrary initial condi- problem was recently obtaind®], and generalizations in-
tions. Its ergodic and equipartition properties are still notcluding a cosmological constant and/or charge subsequently
well understood. This is primarily because the particle interfollowed [7—9]. These solutions include both an explicit ex-
actions of the OG%as with any self-gravitating systerare  pression for the proper separation of the two bodies as a
attractive and cumulatively long range, in strong contrast tdunction of time and an explicit expression for the Hamil-
typical thermodynamic systems for which such interactiongonian for the two-body ROGS as a function of the proper
are repulsive and short range. For the OGS the macroscopgeparation and the center-of-inertia momentum of the bodies.
dynamics does not decouple from the microscopic dynamics, Encouraged by these results, we here make an attempt to
and the usual thermodynamic analysis does not apply. understand the basic features of tivody ROGS. We shall
However, there are some established features of the OGgecapitulate the canonical formalism used in Réi.to de-
Rybicki [1] derived in closed form the single-particle distri- rive the Hamiltonian for theN-body ROGS. We then com-
bution function in both the canonical and microcanonicalpute the partition function and canonical distribution func-
ensembles. In the largé-limit these distribution functions tions. Using an integral transform we then calculate the
reduce to the isothermal solution of the Vlasov equation. microcanonical distribution functions. All results are in
All studies to date have neglected relativistic effects. Thisclosed form to leading order ind./We consider the limit of
limitation is understandable since no relativisheparticle  largeN and compare the ROGS and the OGS. We close with
Hamiltonian was available for analysis. However, this situa-a few remarks. Lengthy intermediate calculations are con-
fined to the Appendix.
We emphasize that, although we begin with a generally
*Email address: mann@avatar.uwaterloo.ca covariant minimally coupled multiparticle action, we do not
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formulation is not yet within reach, primarily due to interpre-
tational issues associated with retardation effects, the choice
of time coordinate, and the role of energy. However, al- dz* dz’\ 12
though we do not have an explicit form for the exiebody +> f dra[ - ma( —9,.(X) — —a) }
ROGS Hamiltonian, we do have a systematic means of com- a d7, d7,
puting it to any desired order ind/We compute all quan-

tities to leading order in this parameter, interpreting the re- X 82(x—2,(75))
sults in the context of the flat background about which the

expansion is carried out.

have a fully general relativistic statistical mechanics. Such a ,
= f d“x

1 1
— /= ldd —
PRRCL [‘IIRMVvLZVM\I'VV\If}

: ()

whereV is the dilaton fieldg,,, andg are the metric and its
determinantR is the Ricci scalar, and, is the proper time

Il. CANONICAL N-PARTICLE HAMILTONIAN of ath particle whose mass is,, with k=87G/c*. We use

OF THE ROGS V,, to denote the covariant derivative associated \gith.
The OGS Hamiltonian is The field equations derived from the acti(®) are
02 R—g*"V,V,¥ =0, (4
HZE - +7TGE E mamb|za_zb|
a 2my 2 Db 1 1
A A
02 EVM\PVV\P— Zng YW¥+g,, V'ZWW-V, V¥
—_— a _—
- ; m. + queazb MaMp|Za— 2y, (1) L
ZKTW}‘F EgM,,A, (5)
where the summation is over &l particles, located at posi-
tionsz, along the spatial axis. The potential term straightfor- A dzZ dZ
wardly follows upon solving the Newtonian equation dr. 9,.(Za) arl~ Egvxyﬂ(za) ar on, (6)
a a a a

V2p=47Gp, (2 where

in one spatial dimension, where=3 ,m,8(x—2z,) is the .y fd 1 dzg dz 52
mass density of thl point particles. Our task in this section mrT & Mg Tafg g;wgvpd_Ta dr, (X—2a(7a))
is to find a prescription for obtaining a relativistic generali- 7)
zation of Eq.(2).

The Hamiltonian for the ROGS that we use is that of a. :

. . . . is the stress energy due to the point masses. Equé&bon
(1+1)-d|men3|qnal theory(a lineal gra\_/lt_y t_heor)/ t_hat guarantees the conservation Bf, . Inserting the trace of
models (3+1)-dimensional general relativity in that it sets : :
NN g. (5) into Eq. (4) yields

the Ricci scalar equal to the trace of the stress energy o
prescribed matter fields and sources. Hence matter governs
the evolution of space-time curvature that reciprocally gov-
erns the evolution of mattdi5]. We refer to this theory as
R=T theory. Apart from being able to model a number of Equationss), (6), and(8) form a closed system of equations
textbook scenarios in general relativity0], it has the attrac- for gravity and matter. o _
tive feature of having a consistent Newtonian lifi{. This ~ In order to obtain the Hamiltonian in canonical form, we
limit, essential for our purposes, is problematic in a generidirst decompc_Jse the scalar curvature in terms of the extrinsic
(1+1)-dimensional theory of gravity11]. curvatureK via

Since the Einstein action is a topological invariant in (1
+1) dimensions, a scalddilaton) field must be included in V=gR=—23do(VyK) + 29, (N;K — 9;No)/\/y],  (9)
the action[12]. Its coupling to the curvature is chosen so that
only the trace of the stress energy of matteipoint particles  \yhere the metric is
here is set equal to the Ricci scalar. This action will form the
basis for the ROGS we consider. Upon canonical reduction
of the action4], the ROGS Hamiltonian is given in terms of ds’=—N3dt®+ y
a spatial integral of the second derivative of the dilaton field,
which is a function of the coordinates and momenta of the
particles and is determined from the constraint equations. with K=(2Ngy) }(29;N;— ¥ INyd;y—doy), so thaty

The action integral for the gravitational field coupledNo =g, No=(—g%) Y2 andN;=g;,. Rewriting the action
point particles is (3) in first-order form yields

R—A=«T#,. (8)

N, \?
dx+ 7dt , (10)
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2 2
':f 02| D pazad(x—2za(t)+ my . MNo P2, No  Pady Nipa
= Pat — \/ —+mg— - —
0z, 0% pg v© iz, JzZy vy
i 0 1 2 —+m§
+IIW +NgR”+N; R}, (12)
Pa dv
. . 1__:0, (19)
where 7~ and IT are the respective conjugate momentayto ¥? 9z,
andV¥. Here
Pa
. ) 1 , 1w}’ _ Y Ny
RO= — k\yym?+ 2k \/ymIl+ (v ——| —= Z;—Ng ——==+—=0. (20)
4y <y p2 4
—+m?2
-2 —+m 26(x—24(1)),
All metric componentsig,N;,7y) in Egs.(19) and(20) are
evaluated at the point=z,, where
Y 1 Pa
Rl=—m— —IIV'+ 27"+ D, — 8(X—z,(t 12
ST 2 o=zt (12 ot at(x)

0z x|,

with the overdot and prime denotirg andd, , respectively.

Variation of the actior(11) yields the set of equations The quantitieNy andN, are Lagrange multipliers that yield

the constraint equation€l5) and (16). The above set of
equations can be proved to be equivalent to the set of equa-

3k K 1 tions (4), (5), and(6) [4].
7+No | — \/;772— —wll+ (W')? An examination of the generator of space and time trans-
2 \/; 8K\/;7 formations[4,6] indicates that we find that we can consis-

tently choose the coordinate conditions

2
Pa y=1 and II=0, (21
—2 ————=0—2,(1)) , ,
a [} upon which the actiorill) reduces to
2y \/—+m3
Y
1 ' Pa I= J d2X| 2 paza(x_za)_H] ) (22
+Ny{ — 5V + —+ X — S(x—2,(1)) 2
7 roa after elimination of the constraints, where
a
+Ng——="¥'+N; — —0, (13 1
2K\/_y Hzf dxH=—;f AW (23)
is the Hamiltonian for the ROGS.
y—No(2k\yym— 2K\/;/H)+N1 —2N;=0, (14 The field¥ is no longer arbitrary, but is instead a function
of z, and p, that is determined by solving the constraints,
which are now
R°=0, (15
1 N
- N2 2_2 2 2 - _
Ri=0, 16 5 (W2 Pt 2 it med(x—2,)=0,
(24)
[t a0y = SN+ —— N + — N’)—O (17 S
|~ Nallt o SN PR B 2 +a§=‘,1 PaS(X—2,)=0, (25)
1 once the coordinate conditiorf2l) are imposed. Equation
i | (24) is an energy-balance equation which states that the en-
+ —Ny| — =0. 4 ) o
v NO(ZK\/;W) Nl( yqf ) 0 (18) ergy of the particles plus th@egative gravitational energy
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must vanish. Equatio(25) states that the total momentum of  1ll. COMPUTATION OF THE ROGS HAMILTONIAN
the gravitational field and the particles must vanish. The con- Although the constraint equations are straightforward to

sistency of this canonical reduction was proved in R&fby . . . :
showing that the canonical equations of motion derived fromSOIVe in the regions between the particles, the maiching con-

S : ; . ditions of these solutions at the juncture of the particles are
?nedzg%;ced Hamiltoniaf23) are identical with the Eq&19) quite nontrivial. For the two-body ROGS their enforcement

The choice of coordinate@1) is the (1+ 1)-dimensional yields an equation that determines the Hamiltonian in terms

) . . of the remaining degrees of freedom of the system. While
analog of that made in the standard Arnowitt-Deser-Misner;, . . .
decomposition in (3-1) dimensiong4,6]. It has the advan- this procedure holds in principle for the-body ROGS, we

tage that it renders the Hamiltonid®3) explicitly time in- have npt'found a t.ractable means of qbtammg an analogous
LD e . .. _determining equation for the Hamiltonian.
dependent; it is implicitly time dependent insofar as it is a o : . :
. . However, it is possible to straightforwardly and rigorously
function only of the coordinates and momenta of khear-

ticles in the system, each of which is time dependent. Thiconstruct approximation schemes for computing the ROGS

Hamiltonian has been shown to be equivalent to that o ?_—|amllton|an forN particles. For example, the postlinear ap-

tained using the Noether theorem associated with diffeomor?hrOX'mat.'to? IS aln exp?nsmn l;)tf t.hedHSmlltqtman in powers of
phism symmetry13]. For a single particle, it is straightfor- € gravitational coupling., obtained by writing

ward to show that the solution to the above system of

equations yields a metric that is asymptotically Rindlerian E e e (26)
(flat space in accelerated coordinates either side of the
masg4]. A set of N particles localized within a finite region

— (0 1
on the line will yield a metric with similar asymptotic behav- X=Xty Pt (27)
ior, since all delta-function contributions to the equations of
motion vanish at large distances. where y is defined byy’= . Insertion of these expansions
We turn next to an evaluation of the Hamiltonié2B). into Egs.(24),(25) yields

K €K
H®=2 Vpatmit g2 X (Vpa+maVps+m;—papy)lrasl + 5 2 20 (VPat mipy—PayPh+ mp)rap

a b

oo

1(k\? 2
3|3 1S VTS bkt D Vo 3 5 3 pula+ e VAEF TR
X g Vp§+m¢2:|rac|+6; Pclac +§ % [\/p§+m§\/pg+m§|rab|—epa\/pg-kmgrab][; /pg+m§|rbc|

+E§c: pcrbc}_E 2 [Vpa+ mapblrab|_5papbrab]{§c: pc|rbcl+e§c: \/pc+mcrbc“v (29)

a b

upon insertion into Eq(23), wherer ,,=2z,—2, is the rela-  order is, therefor¢4],

tive separation between particlasand b. It can be shown

that the solutions to Eq$24),(25) must satisfy the boundary

condition ¥2—4«?y2=0 in the regiongx|>|z,| in order z

for the Hamiltonian to be finit§4]. H=2 muc?+ > m +277ng MaMp| T ap|
The k expansion is appropriate for describing relativistic

N N 2 N

fast motion of the particles and can be carried out to any 18 pt ac Y p2

desired order. However, to compare the ROGS fiemT - Ezazl 8_m§+ ?2‘;1 bzl maﬁb|rab|

theory with the OGS, we turn to the post-Newtonian expan- é

sion, which is an expansion of the Hamiltonian in powers of 275G O 7G\2 N N

¢~ 1. Since bothp2/m? and \/x are of the order ot ™2 all -2 gb PaPblr apl + T) 321 bZl CZl
terms up to the order af~* are included in the postlinear

Hamiltonian (28). The post-Newtonian Hamiltonian to this X MaMpMel | r apl [T ad = Tapfacl+: s (29
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where the explicit powers af have been restored.

z;
The first term in Eq.(29) is the total rest energy of the m,z,+ p MaZg—— 5

PHYSICAL REVIEW E 65 026128

) N
2wGE [(MpyMaZa— MaMyZp) |1 4p)

particles, and the second two terms are the OGS Hamiltonian

(1). The remaining terms are all relativistic corrections to the
OGS to ordec 2. The first of these corrections is a special-
relativistic one, whereas the remaining corrections are due to
relativistic gravity in one spatial dimension. Note that gravity
not only modifies the potential to a quadratic form, but also
includes couplings between particle momenta and their posi-
tions. These features—modifications of the distance behavior
of the potential and position-momentum couplings—are
fully analogous to those in general relativity in three spatial

dimensions.

We next find the equations of motion for the position of
the ath particle. This follows straightforwardly from Hamil-

ton’s principle. We have

_ oH
2= op,
3 N
Pa 1 Pa K
o 2_m§_22 |rab|+ 2 Polravl |,
(30
and
o oH
Pa=— 0"_261
N 1 N 2 p2
:—ZWGE MaMy€ap— o2 E (ma a)
h=1 b= ma
N
Xeap—27G 2 PaPpeant 2( WG)Z
b=1
N N
X bzl czl mambmc[sab| rac| + 8ablrbcl - rab]} , (3D
where

1 z,>z,
€ab™ | _

We can solve Eq(30) for p,,

1 z,<z,.

.3 N
z
maia + 27-er§=:l [(Mpm,z,

Pa=MaZy+ ?

- mambzb) | rab| ] +

and then insert this into E¢31) for p,,

+ (MyMaZy— MMy Zp) € 4p( Za — -Zb)]}

N
—27G 2 mambS ab—

N
wGE (mamy[ 25+ Z3])

N
X &ap— szbZl MaMpZaZp€ 2+ 2(7G)2

N N
X b§=:l czl mambmc[sab| rac| + Sablrbcl - rab]} , (33

which simplifies to

N
maza:—ZWGZ MyMpE€ 5p
b=1
G N
+ 2 (MaMy{3Za+[ 2y~ 2]%} e ap)

_(_G)2§

b=1

MaMpMe(&ac— Epc) | r ab|

o
M=

’7TG N N
Z 21 mamym[ & ab| r ac|

+&ap| oo —Tabl, (34

upon an iterative substitution ¢f, in powers ofc™1. These
equations of motion reduce to those of the OGS in the limit
c—o, and may be shown to be equivalent to the geodesic
equations to this ordd#].

As noted previously, we shall interpret the ROGS Hamil-
tonian (29) in a post-Newtonian flat-space context. This of
course sidesteps the deeper interpretational issues involved
in the development of a fully generally relativistic statistical
mechanics. However post-Newtonian flat-space interpreta-
tions of (3+1)-dimensional general relativity have been of
enormous use in understanding how relativistic effects
modify Newtonian physics(e.g., perihelion precession,
bending of ligh}. The approximations we employ here are no
more severe, and so a study of the physics associated with
the Hamiltonian(29) should afford us insight as to how
general-relativistic effects modify statistical systems. For ex-
ample, retardation effects are accounted for by considering
the system as a set of particles moving in momentum-
dependent potentials.

We wish to investigate the intrinsic structure of the system
described by the Hamiltoniaf29). However, because of the
translation invariance of the system, two phase-space degrees
of freedom are redundant, and so must be factored out; oth-
erwise certain average properties such as density would be
uniform throughout space.

Using EQq.(31), it is straightforward to show that
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N which is defined to be the phase-space average of the quan-
> Pa=0, (35 tity
a=1

and[using also Eq(30)] that the Hamiltonian is time inde- E B B

pendent. This means that we can perform the phase-space N ; 0(2=2a) 3(p=Pa), (38)

integration subject to the constraint
weighted by exp{ BH) with the constrainp=0. Hence

N

P=0 where p= , 36 1 .
p=0 where =2, p, (36 f?(p,z)=mfjdpdz5(5)J7de6(?—L)

since we can choose a frame of reference in which the center

of inertia is constant. ><exp(—,8H)N*12 8(z—2,) 8(P—Pa),
Removing the redundant position degree-of-freedom is a
somewhat more delicate. Although the system is invariant (39)
under the translation,—z,+2, Eq. (32) implies
where
R 1 _ 12 }
Nazl Pa Nagl MaZa 1+2C2 ’ S Zz%fj'dpdzé(ﬁ)f dL 8(z—L)exp(— BH)

which cannot be written as a total time derivative. Physically, (40

the center of inertia is the relativistically well-defined con- . . . o
cept, whereas the center of mass is not. However, we ¢ is the partition function and where the second line in B§)

deal with this problem by inserting a factor of unity in all tg"(t)WS tf_]r_?tmfth?[ indits_,tinguis_h?)llaility of the particles. Note
phase-space averages in the form at a shit ot integration variable

zi=z,+L,

J:dL 8(z—L),

renders the partition function in the form

wherez=(1M)=)_ m.z,, with M==)_m,. If the L de- 1 (=

pendence of any integral trivially factors o(dr can be re- Z=— dLj f dpdz’ 8(p) (7’ )exp — BH),
moved by a shift of variable in the integragnthen we regard NEJ e

the remaining quantity as the physically relevant one to de- (41)

scribe the system. gere theL dependence is seen to trivially factor out. It can,

carI:ind aoﬁ:tinvc\)/irzlhca; ?Ic:f?t?rl]e’ %Ingt?::e&pag& a\\j\(lar::?:s %Vﬁerefore, be droppethlong with the prime notatignfrom
ghting P A further consideration in the evaluation &. Similarly the

ksT=B"1 is the temperature multiplied by Boltzmann's _. . NS .
! . " single-particle distribution function becomes
constankg . For the microcanonical ensemble, an additional

constraint of fixed total energy

1 0
(Bp2= 5 | [ [ dpazamorz)
H(z,,pa) =E, YT
must be included, consistent with the time independence of Xexp(—BH)N™LY 8(z—L—2.)8(p—pa),
the Hamiltonian(29). Since the system is in momentum iso- a a
lation, it is difficult to see how it can be in energy contact (42)

with a heat bath, and so the physical relevance of the canoni-
cal ensemble is somewhat unclear. However, an evaluatioghich is of the form [, dL f/R(p,z—L). We, therefore,
of quantities within the canonical ensemble is instructive inregard f'R(p,z—L) as the physically relevant quantity,
its own right and is a necessary preliminary to computing,pare ¢
guantities in the more realistic microcanonical ensemble, and
so we include it in the present discussion. 1

Henceforth we sein,=m, so thatM =Nm. f.R(p,2)= Wf f dpdz é(p)d(Z’)

IV. THE CANONICAL ENSEMBLE _ ,
X exg — BH)N 1; 8(z—2})8(p—Ppa),

We consider in this section the relativistic corrections to
the canonical one-particle distribution functioﬁf(p,z), (43
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and where the primes will hencefore be dropped.

Unlike the nonrelativistic case, neither the partition func-
tion nor f(p,z) are separable. We proceed by first evaluat-

ing the partition function.

We first write the Hamiltoniari29) in the following form:

H=Mc2+ Ho+ 5 H (44) A
0 CZ R» X 1_?HR . (49)
N pa A. The partition function
Ho:g >m +27TszE IV apl, (45 Consider first the integral
dk N NP3
N N N J —jdpex ik pa—B2 Pa (1—£2HR),
pa 2 a=1 a=12m c
He=—-2 gt 762 2 pilra - 277@2 PaPlr al (50
NoNCON which has integrals that are at most quartic in the momenta.
+(7G 21 bEl > m|rapl|facl —Tafacl,  (46)  Straightforward Gaussian integration yields
= =1 E
dk P2 t
so that f EJdpex;{lkZ Pe— ,82 X PaPy
Pa
2 ( \
exp(— gH)=e AMe 'BHO(l—EHR +0 B) .
N—1
(47) —— a=b
B m
1 (2am| (NP2 ]2
which is valid to the order in which we are working. Writing \/N( B ) { \B -5 a#b >
N (m)ZS(N—l)Z
5(P)=5_ fdkexp[mZ pa}, (48) . B N* /
(51)
we have Hence we obtain
dk p2 B
f Jdpex |k2 Pa— BE 2m 1—52HR
1 (27m|(N-DP2 ﬁ NN 7GB [ m
= W(T) _2 Z Zl c§=:l m3[|rab||rac|_rabrac] - T(E)
N N N
szﬁ m 3(N—-1)?(m\?
N 321 bzl |rab|+ ( ) E |rab| 8m3c N2 E azl 1
B(WG)Z N N N ~Gm N 3(N_1)2 2m (N—1)/2
=(1_ 2 2 2 3[|rab||rac| ablacl Tgb|rab|+ 8N,8m02 \/_N B
(52)

PHYSICAL REVIEW E 65 026128

c BMC
Z=

fdzb‘()exp( ZWGEmZE Irabl>

dk o N op?
Xfﬁf dpexp(|kaz1 pa—lgazlﬁ
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We next consider the integration over the spatial vari-provided the functiorF(z) is symmetric under interchange
ables. Introducing of any pair of variables, which is the case here. The inverse
transformation reads

1 N
W=z.1-2 1SISN, Uy=g X Zn, (83
N—1
we have =L n=l
) - _NZ'n D,, where D,,= N—I. n=l.
(56)
2 Iral= 2 2 I anl = E I(IN=1)(z4+1—2)
a>b a 1 b=1 =1
e and so we have
=2 I(N=Du, (54)
I=1
where without loss of generality the particles are ordered in N N N
the sequence;<z,<:--<z,, and the overall result is then > > D [Iranllrad —rasfacl
multiplied by N! This gives a=1b=1c=1
fdz&(EFF(z) N N
=2 z MNbalact 2 lcal ab
. o o o b>a>c b>a>c
=N!J dzlf dzzj dzg---J dzy 8(z)F(2)
- Z Lo} IN-1 N-2 N-1
- . . - =4> > (N=DH(-Kkuu.,. (57
:NIJ dUNJ dU]_J’ dUZ"'f dUN.__lé(uN)F(U) k=1 I=k+1
—®© 0 0 0
=N! f duF(u), (55) Consequently the partition function is
|
e—BMCZ 2.rm\ (N=1)/2 N-1
Z= ( ) J'dulf du, - jduN 1ex;{ ZWGBmZZ n(N— n)un)
\/_
'S S (NC Kk ZWGmNill Ny SN 58
=D =k)kuu,— pa) ( )U|+W : (58
The three basic integrals in E(8) are
N—-1
fd exp —\ >, n(N—-n)u ; (59
u “~ n )\N 1[(N 1)|]2!
N—1 N—1
f duE k(N—=K)u exr{—)\Z n(N—n)u )=—2N_1 (60)
=1 k n=1 "ONN(N=DI
N-2 N-1 (1—k)
N—-2 N-1 N—1 T/N—_ L
k=1 15k+1 [(N=K)
fduEll_E (N—|)|—|<)|<u,ukexp<—>\n21 n(N—n)un)= TN DT (61)

yielding
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3(N—-1)?
" 8NBmc 4B (7G)’m®

1 (N-1
B ) 2aGEMON(N-1)112 ¢ (27GAmMANFI[(N-1)1]?

Z=g M

N

2mm

NN k) 2#Gm N—1
X
k=1 1=kr1 I (N—K) ¢z (27GAMA)N(N-1)!]2
2 (N=1)/2 N-1 N-1 |-k
eﬂW(Lm) (5N+3)(N—-1)+8N> > (1=
B k=1 I=k+1 [(N—K)
~ WN@repm NI (N-12L T Ame 8N

N-1N-1

Ly (5N+3)(N— 1)+8NE1 .%1 N1

_ 2_ _
exp —BMc In(Bmc) aNEmE
= : (62

IN(V27G/e3) N D[(N=1)1 ]2

which is the partition function to lowest relativistic order. Hence the average energy of a relativistic gravitating system

The average energy is is lower than its nonrelativistic counterpart at the same tem-
3 perature.
<E)———InZ Mc2+ 2(N—1),8’1
B. The single-particle distribution function
N—-1 N-1
(I=k) Consider next the one-particle distribution function,
(5N+3)(N—1)+8Nk21 2, TRy whichs
B 8Mc? B
63 fep.2)= E fe(p.2). (64)

to the relevant order in~ 2. The relativistic correction grows
quadratically withN (for fixed M=Nm) and is negative. where

—ﬁMc

2
Bpa= o fdzﬁmexp( 2weﬂm22 |rab|>5(z o [ 5n fdpexp<|k2 = ﬁE )

X

—gHR)é(p—p,o

—BMc? N—1
_¢ f duNf dulf du, - fduN 1a(uN)exp(—2weﬁm22 I(N—I)u|)
I=1

)

z— uN 2 Dnlul) cn(paz)

e~ BMc? N-1

= f dul---f duN_lexp(—ZwGﬂmZE Cuy, | 8| z+
zZ Jo 0 =1

-
N = Dn,.u.)ecnm.z), (65
I=1

in which
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[ 2 spend 1S, pa-83, 22| (1- L e o6
Oen(P.2)= | 5— | dpexp | 2 pa_'Bazlﬁ — 2Hr|3(P=Pn), (66)
and
(N=1), ns<lI
Ci=IN=D, Du=|_ (67)
where Eq.(53) has been used to express
-1 1 N—1
Zy=un+ 2 lu;— 2 UI:uN_NE Dy (68)
=n =1
Evaluation of6.,(p,2) is somewhat lengthy, and so we relegate its computation to the Appendix. We obtain
) 1 NBp? \[2mm\(N-2/2 L BmM(7Gm)?
N N 2.4 2 2 2
1 [Bp"N(N“=3N+3) 3B8p°(N—-2) 3(N—-2)
nz Zl (:21 [|rab||rac|_rabrac] + Zﬂmcz[ (zm)Z(N_1)3 + zm(N_l)Z + 4(N_1)
N N 2 2
27m 1 N?Bp N
+ C )|:_§azl bgllrab| (Zm(N_l)Z 2 N 1))(2 |rcn|>:| (69)
or alternatively, in terms of tha variables
1 NBp? \[2mm|N-2 apm(zGm)2" "\t
acn(pau)_ \/mexi_zm(l\l_l))( B ) 1- —Z | = (N_I)(I_k)kU|Uk
1 [B?p*N(N?>-3N+3) 3Bp%(N—2) 3(N—2)2
T 2emE&| T 2mAN-1°  2m(N-D1)Z T AN-1)
27mG N2gp? N .
—( ){E L(N=Du+ (Zm(N_l)z SN 1)) E it 2, (N=9)ug (70
Now consider Eq(65), which can be rewritten as
e AMe™ r dk N
R . .
8 (p2)= f—fdueXp(—lkz—wZ (c|+|aDn.>u.)ecn<p,u>, 71
Z 2 =1
where
=27Gm? _ X 72
N=2m , a_N_,B)\' (72

The integration now involves straightforward integrations overtiariables, after which an evaluation of thkentegral using
Jordan’s lemma must be performed. This involves some rather tedious manipulations which we describe in the Appendix. The
final result is
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f _ (27GmP)(NB)3? 1 (5r\|+3)(|\|—1)+”‘1 " (1-k)
P N W BmE| T eN & (NK)

X

1 (,32p4[1+(N—1)3] 3(N-2)8p? 3(N_2)2)
T oemE&l T 2mAN—1®  2m(N-DZ T a(N-1)

N_ AN N g’ ﬁNz
_7{8 -A1- 2N(B77Gm2)||2|]}+_(’j 2(N=1) 2m|(N-1)

- %Ar‘[l—zN(ﬁanﬁ)uzu - B_nlmf{D'N+ K,N[1—2N(,87erz)I|z|]}]

NBp? )
xex;{ - m— 2aGNBm?l|z| ||, (73
|
whereAY, BYY, CN, DY, andK[" are defined in Sec. 4 of the N-1 4 1 N-1g 1
Appendix. Integration ovep yields the canonical density |—A| =5 I_B'NZE(N_l)’
distribution function =1 =1
N—-1
) 1y _(N-1)
pe2)= | dpiepa) AT
N—1 N—1 N-1
1 [(5N+3)(N-1) 1 1 (I=k)
= —DN=> : 76
(ZWGmZNIB)EXF{IBmczl SN =1 | ) k=1 1=%+1 [(N=K) 79
NENE -k which can be used to show that
+ —_—
k=1 1<k+1 [ (N—K)

fw dzp(z)=1 and fx dp den(p)=1. (77

Nt 1 [3(N-1)2
<3 A gl s S Aot

We also have the relations
[A|N—K,N](l—27TGmZN,8I|z|)] 2 v L N1 N§ BN_1(N—1)2 8
I"22N-3" & ' T2 2N-3" (78)

=1

1
+ﬁrn—C2
X exp(—27GMPNpl|z)), (74

the first of which was demonstrated by Rybig¢ki.

whereas integration over yields the canonical momentum
distribution function V. THE MICROCANONICAL ENSEMBLE

The results for the canonical ensemble obtained in the

* previous section are for a system of relativistic gravitating

Ven(P)= J_wdz fen(p,2) particles coupled to a heat bath that keeps the system at a

constant temperatufB= 8~ 1. In such a situation the energy

(NB) NBp? of the system is ill defined, and undergoes fluctuations of the
2omiN—1) O F T 2m(N—1) orderkT. An isolated system, on the other hand, would have

its total energy conserved, and this is the more realistic as-

1 [NB*p*(N?-3N+3) trophysical case. This entails usage of the microcanonical

X1+ BAmc 8mZ(N—1)3 ensemble, in which phase space integrations are carried out

by constraining the total energy to Be The weighting func-
tion e #Y in the phase space integral is, therefore, replaced
with §(E—H).

Fortunately it is straightforward to compute the relevant
microcanonical quantities from the canonical ones. Using the
same reasoning that led to E2), the microcanonical
From the results in the Appendix, it can be shown that single-particle distribution function is

BP?(4AN°>—7N+6) 5N(N—1)+3
T am(N-DZ T BN(N-1)

(75
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1
'R 1 = BE
flidp,2)= anr f f dpdz 8(p)d(z) S(E—H)N™ Q o fcdﬁe Z(B), (82
XE Az2=25) (P~ Pa), (79 \here the contoug in the latter integral extends from o
to +iw to the right of all singularities. Using the general
where result that

1

szffdpdzé(ﬁjﬁ(ijﬁ(E—H). (80) (w)é~? W, w=0

T

27-r|f dgefs=¢ where (W), = |O, W<0.

Note that() and Z are related by the Laplace transforms

(83
Z= fde e AHO(E), 8y .. _ .
0 it is straightforward to obtain
N-1 N-1 (1—K)
(27m)N"D2(E—Mc?)N=5)2 (E—Mc?) (SN+3)(N- 1)+8N21 |%1 I(N—k)
Q= exp — 5 — )
N(#GmN - (N—1)! ]ZF( (N- 1)) Me N
(84)
to leading order in X
Similarly using Eq.(83) in Eqg. (79), we have
Ofi(p.2)= —fdﬁeﬁS[Zf W(p.2)]. (85)
Using Egs.(62) and(73) we have
f _ (27GmA)(NB)*? 1 [(BN+3)(N—-1) Nil NE(-k)
en(P.2)= FomN=D ex Bme N +k:1I:k+1—|(N_k)
- 1 (BPpYL+(N-1)°] 3(N-2)Bp? 3(N-2)2
X2 (A' 2,8mc2( 2m2ZIN-1°  2m(N-1)Z " 4(N—1)))
2 N Bp?[ N?
CZ{B| ~ANM[1- 2N(BmeZ)I|z|]}+,8mCZ(2(N 0 Zm{WD
X CP—%AP[l—zN(ﬂmeZ)qu —IBrnLCZ{D{\'JrK,N[l—ZN(,BmeZ)I|z|]}]
xex;n(Lpz—z GNﬁm2||z|) (86)
2m(N—-1) <7 ’
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N—-1 N-1

(j—k)
(5N+3)(N_1)+8N|Z‘1 1%1 j(N=k)

3
27Gm? ( N )3’2F(§(N1)) (E—Mc?)

'R —
P2 = e N [(E-Mc)] 3 R T Me? 12(N—1)
r5(N-2)
N-1 N 2 CIN_EAIN 2n2
AN [3p2(N-2) | 2N2p .
N | _ 3N/2-4
<2 | A WLm(N—l)Z} mc [2m(|\|—1)2} 5
2N(7GnP)|z|[ N| [ y-3N2-4
+[ > '((N—l)_l +IKN| FY®

z'\'_“) Al [p*N(N°-3N+3) 2p2(2N3me2|zl aNi2-5
TE-MD 2m&| 2mAN-D1®  m | (N-1)2 ¥
(E-Mc?) W[3(N=2)? N N(CI'-IAT) N N) 3N/2-3
3 ( "B(N=1) }_ N A o
EN—3 mc2

as the expression for the relativistic microcanonical partition function, vali@(tb/c?), where

V(o)1 Np? ZNWGmZI -
(PO N DE-Me?) (E-mc?) 17 (68
Employing the expressions
1 I'(y+1
f dy(l—y2)7=ﬁ—(7 3). (89)
-1
F ’y+§
1 C(y+1)
fﬁldyyz(l—yz)uﬁ—g), (90)
2T ’y+§
1 Al (y+1)
f_ldyy“<1—y2>7: Vr———r, (91)
4T ’y+§
the density distribution is
pmc(z)zf_ dpfr,ni(pvz)
N-1 N-1 (j—k)
5N+3)(N—1)+8N —_—
[ 2N#Gn? (E—Mc?) ( ! ) IZl ;:%1 J(N—=K)
“E=McD) T T me? 12(N—1)
"l{[3N-5 2(7GM?)|7]
X ( 5 )[A.“+ Vo (TIATHIKY [[Y (0,213 7
=1
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_ N 1 N) N2 N
|-t Ta| e+
oot Tat)

+< NB{\I+WN(D|’\‘+K|’\I)) }

N—-1 N—-1 (J_k)
_(2N77Gm2) p[(EMcZ){(SNJrB)(N_lHSN;l jz%l j(Nk)”
“E-MD)| T T M 12(N—1)

3(N?-3N+3) 3(N—2) 3N(N-2)?
8IN-1) 4N-1) 8(N-1)

T ( (E— 2)) [Y(0 Z)]3N/2—5/2
M ” +

2(mCMI)l|z]

" (/3N-5
le[( 5 )A.”— vz (AKM[[Y(02) ]
_ 2 _1)\2
+(%)[Y(O,Z)ﬁ”’z5’2{(¥>AF‘—N(B.’“—AP)—N(D|”+K|N)”- (92
The normalization of the densitfy”..dzp,,(2)=1 implies
N-1 N 2 N N N
AY [(E-Mc?)\[AN[(N-1) 2NB| 2N Dj
22, [T+< Mc2 )T( 4 >_3(N—1)I 3(N—1)I_}

(93

N-1 N-1 (k)
5N+3)(N—1)+8N
B p[ (E—Mc?) ( ) ) 21 j %1 J(N—=K) ]

—ON T TR 12N-1) '
which, using Eq.(76), is easily shown to be satisfied to first orderdis (E—Mc?)/Mc?, where the latter quantity is the

dimensionless fraction of excess energy above the total rest mass.
The momentum distribution is

3

N 1/2F(§(N_1))

ﬁmc(p):f_ dzf c(p 2)= (qum(N—l)(E—MCZ)) 3
NE

N-1 N-1 (j—k)
" p[(EMcZ){(F’NH)(N 1)+8N21 ,%1 J(N— k)”
ex

Mc? 12(N—1)
xz [

4(E—Mc?) AN< N
mc&(3N-4)| 12 | (N-1) '

[Y(p,0)]3V22

2AN ( 2AN
Imc?

3p2(N—2)}_ 2<C'N_ %A'N) [ N2p? })

4m(N—1)? Imc? m(N—1)2

N

2AN p2 N2
+ I—' }[Y(IO,O)]‘QLN/Z_ZJr |zmlcz [ - E((N—l)z) }[Y(p’o)]im_s

3
N3 AN
(E—Mc?) Imc?

N 1 N
AN[3(N—2)2 Bl N(C' _TA') DN+K] ) ) ]
X(T[S(Nl) +1}_|_+ I(N-1) ) YO

P*N(N2—3N+ 3)
(2m)*(N—1)*

4(E—Mc?)
(3M —4)mc?

}[Y(p,0>]i“’“+
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N—-1 N-1

> j—k
T e L W [
:<27Tm(N—1)(E—Mc2)> F<3N 2) ex M2 TN
SN-

p*N(N2—3N+3)

! 2m2(N=1)°

N [ p?[8N?—1IN+6 } aN2-3 N__3(N=2)
—Mcz(m[ N=1)? Dmp'(’)h TE-Me?) aMe?

N-1 N-1

X{ }[Y(p,oni“’z“‘

2N(E—Mc?) ((5N2—20N+12) (t—s)

B 3N/2-2
(3N-4)Mc?|  8(N—1) +slts+1t<N—s>>[Y(p’0)]+ ] o

It is straightforward to show that” .. dp 9,,«(p) =1 from Egs.(89)—(91) to first order inf=(E—Mc?)/Mc2.

VI. THE LARGE- N LIMIT

For statistical system@uch as those of interest in stellar dynamitke largeN limit is of considerable physical interest.
This is the limit in which the total energlg and total mas$1 =Nm are fixed. In the nonrelativistic case, the single-particle
distribution function approaches the isothermal solution of the Vlasov equations in theNidnget- [1]. However, the
relativistic case is somewhat more subtle, since the expressions we have obtained are valid only if the speed of light is
sufficiently large relative to other quantities of the same dimension, and becomes large we must ensure that this
approximation remains valid.

In order to investigate the larggdimit it is necessary to rewrite all quantities in termsEfM, andN. As in Ref.[1], we
adopt the dimensionless variables

p Z
n ﬁ;&l g E! (QS

where

_ 2 2 _ 2 2
2(E Mc)_ 2(c VZE4(E Mc):4§c (96

L="3.6M2 ~ 32GM’ 3M 3

are the characteristic length and velocity scales of the system. The scaled distributions functions are correspondingly defined
p*(&)=Lp(LE), O*(m=mVd(mVy), {*R(5E=mVLFR(mVyLéE), 97)

so that

| [ andet=rne- [ azoro- [ dyorm-1 (98)
Consider first the partition functio(62), which can be rewritten as
N-1 N-1

(I-k)
(5N+3)(N_1)+8Nk21 |:%1 m

exp —BMc?— BV 5 ( N )3(Nl)/2

Z= 99

IN(V27GIc3)N=D[(N=1)1]? BMc? %9
|

The approximation(47) is valid provided which sets an upper bound on the thermal end@y: 81

of the system for a given value d&f. For fixed Mc? the

N-1 N-1 (1-K) relativistic corrections are valid only as the temperature be-
(BN+3)(N-1)+8N>, > TN=K comes vanishingly small in the limit of larg¥. The expo-
B> =1 15k [IN—K) nential approximation is slightly better than the polynomial
8Mc? ' one because of the positivity of the partition function.
(100 Consider next the average energy in the canonical case as
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FIG. 1. Maximum value of the average relativistic energy in

units of Mc? as a function o.

given by Eq.(63), which we rewrite as

3
<§>:§(N—1)W

N—-1

(5N+3)(N— 1)+8NE1 Py

N—-1

(I=k)
[(N—K)

8

1 2
X W) , (101)

wheregz(E Mc?)/Mc?, as before. When the thermal en-
ergykT=p"1

PHYSICAL REVIEW E65 026128

257 Mon-relativistic
2_
Energy 1.5
1 -
057 J_—d__ ________h_ﬁ_‘ﬂflahwshc
.-/_’ Hﬁ\“"x‘_
U4 002 004 0.06 0.08 Dk_|1_ 012014 0.16-0.18 02
0.57 "\\

FIG. 2. Average energ§() as a function okT for N= 10 for the
nonrelativistic and relativistic cases. Axes are in unitdviaf?.

N-1 N-1 (1K)
_(5N+3)(N 1)+8N2l .%1 Nk
A= 6(N—1)Mc? =hm:

(102

after which the average energy decreases with decre@sing
becoming negative whe=13p,,. As N becomes large,

Bm—1[%—(27219)](N/Mc?). At B= B, the average energy
has half the value of its nonrelativistic counterpart. In Fig. 1
we plot the maximum value of) as a function ofN. The
curve asymptotes to the constant value df)
=0.573940872 abl—oe.

Of course the relativistic expansiofd) breaks down well
before B reaches this point. In Fig. 2 we plot the average
energy({) as a function okT for N=10. The relativistic case
is clearly distinguishable from its nonrelativistic counterpart
oncekT/Mc?>0.02. However, the upper bound on the ther-
mal energy ik T/Mc?<0.0117 forN=10. In Fig. 3 we plot
the average energy over the allowed rang(k'bfllustrating
that the distinction between the two cases is about 8% at

of the system is sufficiently small relative to mpst. ForN=1000 the maximum difference between the

its rest energyMc?, the expression for the average energywo cases is less than one part in a thousand over the allowed
(¢) does not differ much from the nonrelativistic value given range ofkT.

by its first term. As the thermal energy growise., asp

In the canonical case we take the enelgtp be the fixed

decreasesthe value of(¢) increases more slowly than its total average energy as given by E63). Solving this equa-

nonrelativistic counterpart, reaching a maximum when

tion for the inverse temperatue yields

N-1 N-1 (1—K)
_18<N‘1)‘{(5N+3)+<N—1> & TN
p= 2E-MJ)
an by
- ezl st (103
where
3
aNZE(N_l),
1 N-1 N-1
((5N+3)(N 1)+8N211%“E:\| k)) (104
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are defined for convenience. The liniit00 implies that

by | by
a2 ay

1>

l 7 @
{= *(Z—g)NZ, (105

gmax

where the latter limit holds for largl. Since the exponential forms a better approximation than the polynomial one, the value
of {max iS probably a bit larger than what is given in E405), although it is not clear how much. We obtain

2
5 2| zay

fE(n.6)= MVLf'R(mVW Lé)= \/E(écz)slzf’R(mVn L= ———
TN Y7 3N7G V3 YT NYAN-D

T - oo

N

32

by

>< JR——
aﬁg

bN 3/2 bN
1—a—2§> ex a—Ng

N

NZ[ . 47*(N2—3N+3) by N 7’(N=2) 3(N—2)? by |\t
N'YS |2 _ NS _
ey VT ONN-D® | 1T @28 | T A ey ANiN— D2 T A | a2 ¢
2N¢ N by 2ay7?[ N? v 1oL day by
a—N{—zm—l) 28N ()| O A Y e gz )l
NC( o ol dan(. by by 1] by , 4ay ) }
——1Dr+Kp| 1 3_N( a—ﬁé el || 1 a_ﬁ,g exp—|1 a—ﬁi 7+ 3 e || (106)
|
which is valid only to first order ir. 4ay by
The canonical densit§74) becomes X|1— m<l— a—2§)||§| }ex;{ —2(1-1/N)
N
(B=LpdLe)= 2 Ly by
Pc =LpPc = a_~nPc x| 1—
37GM 1 gﬁg)lm}. (107
4ay  [by by |\ 1 by
“esad 1 gte| |3 aa-2
N N -t N We plot in Fig. 4 the nonrelativistic canonical single-particle
NZ (3 (N-1) N_ pN N NZ N e
ay'8 N A’ =B —D +a[A|_K|]

0.167

0.141

0.1217

0.1
Energy0.06 ]
0.061

0.04

0.021

o 0.002 0004 0006 0008 001 ' ' g
kT

FIG. 3. Average energ{() for N=10 over the allowed range of FIG. 4. The nonrelativistic canonical density function for vari-
KT. ous values of\.
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o 0.5 0Ty

FIG. 5. The canonical density function fd&t=3 for various
values of the relativistic parametér The nonrelativistic curve is
labeled (=0, and followed by curves fot=0.1, {=0.3, and{
=0.5, respectively. Here E¢L0Y yields {,,,~0.43 as the limit for
which the relativistic expression is valid.

FIG. 7. The canonical density function fof=10 with curves
that correspond t¢g=0, 0.1, 0.2, 0.3, and,,,~0.15.

corrections inZ will modify this, the general trend is clear.

The falloff of the relativistic density functions is also more

density functionpg (£,{=0) for various values oN, recov-  rapid than in the nonrelativistic case.

ering the results of Rybicki1]. With the exception ofN Unfortunately there is no closed-form expression for the

=2, the central density grows with increasidyand the terms KlN and D|N and so it is not possible to evaluate an

distribution becomes slightly more sharply peaked. It can bexplicit expression for eithgs? (£) or p¥ (&) in the largeN

shown that asN—o the canonical densityg(£,{=0) limit. Instead these quantities must be computed using sym-

—3 seclt¢ and the single-particle distribution function ap- bolic algebra; forN>20 this involves the factorization of

proaches the isothermal solution of the Vlasov equdtidn  thousands of terms, and computer memory limitations make
In Figs. 5-8 we plot the relativistic canonical function this a prohibitive task. However, the largfebehavior should

ps (&) for differing values ofN. As is clear from these not be too different from thé=20 case, at least for small

figures, relativistic effects significantly enhance the centralvalues of{. Figures 9 and 10 plot the density for differeyt

density by as much as 30% depending on the magnitude of at two different values of.

Even for{=0.3, the central density is larger than its value of The canonical momentum distribution functidid5) is

1/2 in the nonrelativistic largét limit. While higher-order  straightforwardly evaluated to be

: 0T s 1 15 : 2 25
FIG. 6. The canonical density function foéé=5 with curves FIG. 8. The canonical density function fof=20 with curves
that correspond tg=0, 0.1, 0.2, 0.3, and,,,~0.29. that correspond tg=0, 0.1, 0.2, 0.3, and,~0.15.
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FIG. 9. The canonical density for different values Wf at
{=0.1.

1(}:;‘n( 7)=mVi¢,(oV 77)

4
=m\/ =5~ enloV)

1 bN >1/2 % bN
=—=|1-— exg —7?| 1- —
@( 3¢ T ae
N¢ (N2—3N+3) by |\ ,
X 1+a7NiZN(N_1) 1*afﬁg n
NZ[ 7%(4N2—7N+6) 5N(N—1)+3
ayl  2N(N-1)  8N(N-1)
by |7t
X|1-—=¢ ) (108
ay

where each 0f107) and(108) are also valid to first order in
{. Here we can easily take the lartelimit, which is

3
2

N=3
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FIG. 10. The canonical density for different values Mfat
{=0.3.

1
‘9:(7])%\/7;

—2m2(27%— 1)]) e 7, (109

§ 184 g2
1+ a[187] -9 =9

to leading order ir.

We plot in Figs. 11-13 the behavior of the canonical mo-
mentum density as a function of the rescaled momentum
for differing values ofN. The central momentum density
increases with increasing and falls off more rapidly than in
the nonrelativistic case.

However, forp>2, the momentum density grows relative
to its nonrelativistic counterpart, overtaking this value for
large enoughy. The relative growth is exponential, although
the overall momentum density is exponentially damped for
any . As N increases, the differences between the nonrela-
tivistic and relativistic cases become less pronounced, al-
though the basic features remain the same even in the limit
thatN— oo,

The microcanonical results are

FIG. 11. The canonical momentum density as a functiom ®r N=3. On the left-hand side is the behavior &f(7;¢) and on the
right-hand side is its behavior relative to the nonrelativistic denglt;0). Thecurves correspond t¢=0, 0.1, 0.2, 0.3.
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054 3
0.5 257
0.4 24
90.3- 15]
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FIG. 12. The canonical momentum density as a functiom &r N=30. Notation is as in Fig 11.

fine (7 g)—ane \[@c )32 R (mV7,LE)

3
B 2 \/fl"(—(N—l)) XF{% }Nzl AN(l_ 27]2 _M)BN/2—4
3N V3m(N-1) ( N 2)) aN§|:1 ! 3(N-1) 3N/,

(N-2) 1o\ aN? 277 4l|gl\ 3N
+§772[A' (N—l)} (C' |A')[3(N—1)2”(1_3(N—1)_W)+

) W27 (N?=3N+3)  16N|&| ( 272 4||§|>3N/2—5
+ EN_4 14 | 9(N_1)3 g(N_l)z _3(N—1)_ 3N

4§ N N ] 2772 4||§|)3N/2—4

1
N(CN-—AN
N¢ 3(N— 2)2 \ I | I) \ N) 27]2 4||§| 3N/2-3
: 3N3)(A sn-D T Bt T nep DK (1_3<N—1>_W> ’
2 (110
prnc(g)ELPmc(Lg)
- [[3N-5 4l 41| &\ 3N2=Ti2
S (= O
=1
2 41 3N/2—5/2] 3N_12
+§§(1—£) [((8—N))AP—<BP—AP>—<D.”+K|”> } (111)

and
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3
064 >

FIG. 13. The canonical momentum density as a functiom &r N=<«. Notation is as in Fig. 11.

ﬁzwc( 7)=mVdn,(mVy)

3
)
“NazN-1) [3 S P

2772 3N/2—-3
)4(1_ 3<N—1>)

-z

3| (N-1)? .
]
g(N_z)[n4(N2_3N+3) 27]2 )3N/24
3 (N-1)3 C3(N-1)/,
2N¢ [(BN?-20N+12) ' GT (t-s) 27 |22
TEN-A| T BN-D) & &ty (1_—3(N—1))+ : (112

where each of Eqq110), (111), and(112) are valid to first

order inZ. As N—o we have
035
1 ¢ 4 2
Imd 1) — —=| 1+ =[18n"—81y°+27 0.37
J 54
0.251
—2772(2772—1)]>e”2. (113 .
Note that this differs from the canonical momentum density 0.15]
unless=0.
The microcanonical density functiquf,(&;¢) for differ- 0.1
ing values ofN is plotted in Figs. 14—17. FoN=3, the
microcanonical density is uniform unfl= 9/8, after which it 0.054
falls linearly to zero. Fo<<9/8, at most two particles can
contribute to the density; in this region relativistic effects 0 o 3

enhance their contribution. However, fér9/8, at most one
particle can contribute, and relativistic effects suppress its
contribution unt'|§:9/4' after Wh'Ch the de”S'_tY V_an'Shes' FIG. 14. The microcanonical density function fde= 3 for vari-
For largerN, as in the canonical case, relativistic effects s yajyes of the relativistic parameterThe nonrelativistic curve

significantly enhance the central density by as much as 30%s |apeled =0, followed by curves corresponding ©=0.1, ¢
depending on the size @t Their falloff is more rapid, and =02, and¢=0.3.
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FIG. 15. The microcanonical density function f8e=7 for vari- FIG. 17. The microcanonical density function fdd=20
ous values of the relativistic paramtérNotation is as in Fig. 14.  for various values of the relativistic parameterNotation is as in
Fig. 14.

for sufficiently large¢ the nonrelativistic density distribution
is larger. AsN increases, the density becomes more sharpl
peaked and the contrasts between the nonrelativistic and rel
tivistic cases become less pronounced.

In Figs. 18 and 19 we plot the microcanonical density VII. CLOSING REMARKS

dls\tlcgutllc()) r: I(r)lreIrrlr?ircer?)?::r?o\rlw?(lzglesmd())‘rr?gr?tLzlée?i?étributions in We have carried out an analysis of the statistical behavior
b of a ROGS to leading order ind./ The qualitative behavior

Figs. 20-22. The results are qualltatlvgly similar to_the Ca%f the ROGS as compared to its nonrelativistic OGS coun-
nonical case, although the actual functional forms differ.

For smallN, the relativistic approximation breaks down terpart{ 1] is clear. At a given energy, the ROGS temperature
' PP .~ . is smaller than the OGS temperature; relativistic effects cool
even for as small as 0.3, and the momentum distribution

function goes negative, as shown in Fig. 20. However, forthe gas down. The one-patrticle distribution functions become

larger N the momentum distribution is positive for afl more sharply peaked in each case with increadinror a

— S " iven N, the ROGS density functions become more sharply
=0.3, for example as in Fig. 21. The relativistic densities ar%eaked as the relativistic paramegancreases. This effect is

commensurate with that observed in the exact two-body
case, in which the maximal proper separation of a pair of
particles is smaller in the relativistic system that in its non-

more sharply peaked and for sufficiently large momentum
arameter are larger than their nonrelativistic counterparts.

0.5

0.4+

0.3
p
0.2
0.1
o ; 3
_ _ | | 5
FIG. 16. The microcanonical density function fod=10
for various values of the relativistic parameterNotation is as in FIG. 18. The microcanonical density for different valuedNodt
Fig. 14. {=0.1.
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& However, for the momentum densities, this is not true.
Although Jocs> Urocs for intermediate values of the mo-
mentum parameten, once » becomes large enough this in-
equality is reversed. Again, this behavior is presumably due
to quadratic character of the ROGS potential relative to its
linear OGS counterpart in the former case, and fromphe
corrections in the Hamiltoniafd6) in the latter situation.

This work can be extended in several directions. It would
be straightforward to extend these results to the charged and
cosmological systems considered in R¢&9| to see what
effects these impose on the distribution functions. Extensions
to unequal masses would also be interesting, although con-
siderably more difficult. It would be very interesting to go
beyond leading order in &/to investigate nonperturbative
effects of the ROGS.

Further understanding the ROGS will undoubtedly require
numerical experiments for various values I¢f The equa-
tions of motion yield quartidas opposed to quadrakiime
dependence of the position variablés leading order in

FIG. 19. The microcanonical density for different values\odt 1/(:), and so can be Stra|ghtf0rward(¢|th0ugh somewhat
¢=03. tediously integrated to investigate its equilibrium and equi-
partion properties. Work on this is in progress.

relativistic counterpart at the same enef§y9]. Relativistic

gravity introduces a quadratic spatial term in the potential, ACKNOWLEDGMENTS
which makes the attractive force more powerful for larger
distance at the same energy. This work was supported by the Natural Sciences and

For both canonical and microcanonical distribution func-Engineering Research Council of Canada. We would like to
tions, pocs™ procs for sufficiently large position parameter thank T. Ohta for interesting discussions and correspondence.

APPENDIX
1. The Gaussian integrations

The following Gaussian integrations were used to obtain(kf):

dk N N p? dk 2
- H _ IR - 7,8(pa/2m)+|kpa
f wadpex%lkazl Pa 'Bazl 2m f277611:[1 fdpae
2m\N2/ 2m\ ~ Y2 ¢ gk N P
(?) (7) %al;[l Jdbae*paﬂkpa

2m)| (N-D/2 dk N'k?
_ |2 N2 | 2 _
( ,6’) T JZWeXp( 4 )

1 ( 2’7Tm) (N=1)/2

WL B

: (A1)

FIG. 20. The microcanonical
momentum density as a function
of 7 for N=3. On the left-hand
side is the behavior of},(7;{)
and on the right-hand side is
its behavior relative to the nonrel-
ativistic density 6z (7;0). The
curves correspond t@=0, 0.1,
0.2, and 0.3.
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N =100

FIG. 21. The microcanonical momentum den-
sity as a function ofy for N=100. Notation is as
in Fig. 20.

(N+2)/2 ~12 4K B N .
(Z_m) (Z_m) f dk f dp,ple Pariha [ [ dpye ot i
2 b#a

B B
2m| (N+172 dk NK? ) 1.
N N2 | _ k2
—( ,3) T 27_rexp( 7 4(2 k)
\ 2m (N+1)/2 N—1 (N+1)/2
- (7) 2aN¥2 27TN3’2( ) ! (A2
dk o Nop2
f gf d|0|ob|oce><p(Ikgl Pa~B2 5o
2m)\ (N+*2/2/ o)\ ~1/2 dT( 2, -~ 2 N ~2
— | = - - A A o Phtikp T T e PcTikPc > 2 —patikpy
) et e
2m (N+1)/2 - d"k N~k2 _'RZ 1 27m (N+1)/2
=| — N _— —_— = —
(B) L v R A 27TN3/2( B ) ’ (A3)
dk N N p2 2m\N*t42 om\ 12 gk 2, T N 2
Iy 4 B _ a2 = - 7 T~ 4aPatikpa = A= Ppt+ikp
2m| (N+3)12 dk NI
:(F> /2 EEX[{ 4 ) (k4 12(2-1-12)
2m (N+3)/2 3(N_1)2 3(N_1)2 27m (N+3)/2
=\ — 7TN/2 = 2N152 . (A4)
B 4\/7N%2  (2m)°N B

FIG. 22. The microcanonical momentum den-
sity as a function ofy for N=<. Notation is as in
Fig. 20.
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2. The 6(p,z) term
This term is

Oen(P.2)= f fdpexp<lk2 Pa— BE )

X

—gHR) o(p—pn), (A5)

where

4

N N N
p
Hr=—A12>, am? S5+TGN DY, D PoIT al
a=1 om a=1b=1

N
- 2776)\32 papb| rab|
a>b

N N N
+)\4(77G)22 2 2 m3[|rab||rac|_rabrac]-
a=1b=1c=1

(AB)

The classical and\, part

Here we must compute

[ 2] o3,

X 5(p_pn)< 1-

BE)

pm?
?)\4(77(3)2

N N N
XE E 2 [|rab||rac|_rabrac])v (A7)

a=1b=1c=1

of which the relevant part is

j fdpex;{
dk [ Bp?
= zexr(lkp— ﬁ)fdp

N N2
x exp| ik - —=
EX[<I gn Pe ﬂagn Zm)

BE )5(p Pn)

2m)| (N-272 dk
=<7) W(N_l)/ZJEekaT)—TJZ)

PHYSICAL REVIEW E 65 026128

p( (N—1)~k2>
X ex —T

2.rm\| (N-2)12
:(7) \/_ ”( SN~ 1)) (A8)
and so
fdpexp(IKE Pa— BE )
S(p— pn(l Ez Na(7G)?
N N N
XE 2 z m3[|rab||rac|_rabrac])
1=1 b=1c=1
2.rm\ (N-2)/2 Bp2N
:<T) W—lex"(_me—l))
3 2
" ( L 4B>\4r22(wG)

N—-1 N-1
x> > (N—I)(I—k)ku|uk), (A9)
k=1 I=k+1
where Eq.(57) was used.

3. The Ny part

Now we have

dk X N p? B
f Efdpexp<lk321 Pa=B2, %) 5(p—pn)(—g)
N 4
Pe
X _)\1;1 8m3)
8m CZEJ fdppc
2
xexp(lkE Pa— BE )6<p Pn), (A10)

and
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f fdppcexp<lk2 Pa— BE )5(p Pn)

. (c#n)
f—exy{mp——) dpeX[{lkE P, Bgn Zm)[p“ (c=n)

B*p* 3(N-2)Bp* 3(N-2)?
27m (N+2)/2 1 ,BDZN ((Zm)Z(N_1)9/2+Zm(N_1)7/2+4(N_1)5/2 (c#n)
(T) ?ex"<_2m<N—1>> Bp* A
(<2m>?<N—1)”?) (e=n),
which gives
dk X B Nope
f;fdpem{lk;l Pa— Bg o )&wm)(—;)(—xlg 8m3>
2mm (N+2)/2 A\ ﬁ szN
= ex N —
( ,8) 8m3n2c? p( 2m(N—1))
N ( B*p* +3(N—2)ﬁ|02Jr 3(N—2)2)+ B*p*
( )(2m)2(N—1)9’2 2m(N—1)"2  4(N-1)%?)  (2m)’(N—1)Y?
{ il
e —
(2wm)<N2>’2X 2m(N—-1)) A, (ﬂ2p4[1+(N—1)3] 3(N—2)8p? 3(N—2)2)
= + + . (A12)
B N—1 2Bmc\  (2m)2(N-1)3 2m(N—1)>  4(N-1)
[
a. The\, part
Now we must do J Jdppcexp(lkE Pa— ,32 )5(P Pn)
dk Bp?
f Jdpexp(m}) Pa— BZ ) 3(p— pn)( ﬁ) - Texi'kp_%)
N 2 2 +
NN xfdpexp(ikE P.— B>, Zp_:]){p; (c_n)
X| +7GN Y, pb|rab|> ann arn (e=n)
=1 b=1 27Tm) N/21 F( szN )
= ——— — ex -
B p 2m(N—1)
MG O o dk
~ ST 2 ] 27 | oe U Y
2m(N—1)°2" 2(N—1)%?
p2 Bp
xexp(mE Pa— 62 )5(p Pa).  (A13) 2m(N—1) (c=n),
(A14)
and the integrals are giving
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N N
f fdpexp(lkZ Pa— /32 )5(p pn)(—ﬁz +wGhzglel pﬁlrabl)

c

_ AmGB | 2mm|N21 Bp3N NN Bp? (N—2) p2
R (T) EeXp( 2m(N— 1)){§1§n|rb°|[2m(l\| 152 2(N—1)%2 +2 |rC“|<2m(N 1)177)
_ 2,mGm 1 (ZWm)(N_Z)/Z p( Bp?N )
AR AN R " 2m(N-1)
N N N 2
Bp (N=2)
X Cgl k;n |rb°|(2m(N 1)2 + Z(N 1) + 2 | cn| ):| (A]-S)

Since=p. |1 ol =h_1|repl—[Fenl, this becomes

f fdpexp(lkf, Pa~ BZ ) S(p— pn)(

__2)\27TGm<21-r_m)(N2)’2 p( BpN )[§§| | Bp? +(N—2)
- mcz B TR T om(N-1)) (& & " 2m(N—1)2 T 2(N— 1)

N(N-2)] (N-2)
+2 '““'( [(N 1)2 } 2<N—1))]

(N=2)/2 2 _
:—2A2W6m<27—m) exp{ —Bp )(22 [(N— Iu|[ Ap + (N 2)]

°N| ®

N N
RS> p§|rab|)
a=1b=1

N1 B ZmIN-1) N D2 2N
n—1 2
B2 [N(N-2)]  (N—2)
2 S“S+E )(*ﬁ[m—lﬂ}_zm—n))' (416

b. The A3 part
Now we must do

f fdpexp(lkE Pa— BE )5(p pn)<—ﬁz>(—2w6>\3§3b papblrab|)

C

N

)\ G dk N N
o ﬁf fdpexp(lkE Pa— BE )5(p Pn) (E > pcpblrcb|+2pczllrcn|pc), (A17)

c#n b#n

where the integrations are

dk
fzjdppbpcexp(lkE Pa— BE ) 8(p—py)

Bp? 1
om\ N2 Bp2N <2m(N—1)5’2_ 2(N—1)3’2) (b#c#n)
:(T) E p<_2m<N 1)) B (A18)
(‘ﬁ(N—l)SD) (c#n, b=n),

giving
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f fdpex IkE Pa— /32 )5(p pn)(

ONI ®

N
)( _ZWG)\SEb papb|rabl)

S 2 - i
T ¢ 3 | =R 2am(N—1) fenll = 2m (N—1)

p? 1
+<§n t;n |rbC|<2m(N 152 2(N—1)3’2)]' (A19)

Using againS . ,|r ol ==b_1|rcpl — |Fenl, this becomes
B N
f fdpeXp(lkE Pa— BE )6(p pn)< )(—27707\32 papblrab|>
_qurGB(ZTrm)N/zl p( Bp°N ) 2 ( p?
== |75 7 " amn=n)|2& rell mam e 1)372
X( Bp 1 )
2m(N—1)>% 2(N-1)%"

_27\37'er<27T_m)N 202 Xp( BpN ) EN: EN) " |( Bp? 1 )
- UN—1c?\ B € 2m(N-1)/ | & &1 P9l 2m(N=1)2 2(N—1)

el i)

N N N
2 E |rbc|_22 |rcn|]
c=1b=1 c=1

(N—1) 2m |(N—=1)2
. 2)\3Gm 27Tm (N=2)72 ﬁp sz 1
_\/N—lcz(T) eXp( 2m(N— 1)) 22 {(N-= 1)u'(2m(N—1)2_2(N—1))
n—1 N—1 1 ’sz ON
! 5213“5+52n(N_S)“5)((N—1> _%[m——nzm (A20)

c. The full expression foré.,(p,z)
From Egs.(122), (125), (129, and(133) we have

dk
ch(p,z)=fzfdpexp(|k2 Pa— BE

a=12m

B
1- —SHg|d(p—pn)
C

(2wm)<N—2>’2 1 p( Bp>N ) Ay (sz4[1+(N—1)3] 3(N—2)8p?
=|— exp — 1+ +
N—1 2m(N—1) 2pmc\ (2m)2(N—1)3 2m(N—1)?

B

3(N-2)2\ 2x,#Gm| "' Bp? (N—-2) nt N1
" 4(N—1))+ c2 _221 I(N_I)ul[Zm(N—1)2+2(N—1)]+ z‘l Ste En (N=s)us
(N—2) ﬁpZ{N(N—z)m NgmGm([ N1 ( Bp? 1 )
- 2> I(N=Duy, -
2(N=1) 2m| (N—1)? c? =1 2m(N—1)2 2(N-1)
n-1 N-1 1 Bp? oN ]
i El SUS+§n (N_S)US>((N—1)_%[(N—1)2}
m3 N-1 N-1
= Ay(7G) kEH%l(N I)(I—k)ku|uk) (A21)

or alternatively
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_[2am)|(N=2P2 Bp°N L N (BZP1+(N—-1)%] 3(N-2)Bp? 3(N-—2)2
Oen(P.2)=| —5 /_ “omiN-D/| T 2gm& | T 2mEN-1® " 2m(N-1)Z © 4(N-1)
N—1 - N—1
48m 27Gm
——fQ—M(me)ZE 2 —|)(|—k)kuluk+ic2—2 I((N= D)y,
k=1 I= =1
(2M5—20\)BP?  [2Ma+2(N=2)A,]\  2[2A5+(N—2)\,]7Gm Nt
2m(N-DZ  2(N-1) e E st 2, (N=s)us
NBp?
“\ T2(N—1)2 (A22)
When the\’s are all equal to unity, this is
1 NBp2 \[2mm|N-272 agm(mGm)2" Gt Nt
B ol B (e e D USRI
. 1 [B?p*N(N?-3N+3) 3Bp%(N—-2) 3(N-2)?] [27mG
2Bmce|  (2m)%(N—1)3 2m(N—1)> =~ 4(N-1) c?
N—1 2 2 n—-1 N—1
N28p N
[
4. An evaluation off.,(p,2)
Now consider Eq(65), which can be rewritten as j du exp( KBE C +|aDn|)U|) Us
e M ¢ gk -
fR(p.2)= f—fdu 1
2 ) (ZWGBmZ)N CotiaD,q H C|+|aDn|
N—-1
Xexp( —ikz—\BY (C/+iaD )y, (A27)
I=1
X acn(pvu)v (A24) N-1
12 6= fduex ~\BY, (Ci+iaDy)u;|usu,
where =1
k 1 1 1
A=2aGnt, “TNBN (A25) T (27GBM)NI Co+iaD,, C;+iaD,,
The integrals are now N—1 1
v <l & 57am, (n28)
fdnex )\,82 (Ci+iaDy)uy,
N—1 and we must divide byN and sum over all values af to
_ 1 1 1 (A26) obtain the correct result.
2aGAmMHN"L L5 C/+iaDy,’ For example,
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1 N n—-1 -
21 " N(27GBm%)N ng H I(N—I—la) 1;[ N—I)

1
(I+ia)

Z|I—‘

1 N 1 T(N-n+1—ia) T(n+ia)

- N(zwe/smz)'“*lng1 (n—1!I(N=n)! T(N—ia) T(N+ia)

1 N (N—1)!

T T(N—ia)[(NFia)27GAmMAN T & 2 " (n—1)!(N—n)!

JdWV\)\‘ n— |a(1 W)n+|a 1

! ! —ia i _ _
:F(N—ia)F(N-f—ia)(ZqTGIBmZ)N*ljodww (1—w)'*(w+1-w)N"?

3 1 I'l—ia) I'l+ia)
2aGBMN I T (N—ia) I'(N+ia)

(A29)

This function has single poles at=in, wheren is an integer taking its values betweerN and N, except forN=0. Its
residues are

IN'l-ia) I'(l+ia) B in(—1)"
ST(N—Ta) [(NFi@)__ T(N-mI(N+n)’ (A30)
yielding
1 N dk N—1
anl jﬁj duexp(—ikz—k,[i’lzl (Ci+iaD,))y,
2N,87-er "t ,
for the leading nonrelativistic term, where
_ n+1 2
v N(=D)MT(N)] A32)

" T(N-n)IT(N+n) -

The remaining integrals are somewhat more difficult. We obtain

1 N N—-1 N—-1
NZ fduexp<—|kz )\ﬁE (C,+|aDn,)u|) Z s(N—s)us

N N—1
1

d
:_)\,‘TNZH %[f duexp(—)\ﬂz,l (aCi+iaDp)uy

N

o 1.d 1 H 1
" NBNdo| &L (ZNB)V T Ci+i(alo)Dy, .
d[ o N I'(1-ialo) T(1+ialo)

~do|(ABNT(N=ialo) T(N+ialo)| _,

1 T(l-ia) T(1+ia) _ _ | |
(ZWGBmz)N (N Ia) F(N+| )IN 1+|C([\I’ _|C()—\I’(l—la') _\I’(N+|(1)+‘P(l+|a’)]},

(A33)
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where ¥ (x) = (d/dx)InI'(x) is the digamma function. This NAA da . N Nl-ia) I'(l+ia)
function on the right-hand side of E¢A33) has a combina- Zﬁf S5-e @ T(N—ia) T(N+i
tion of single and double poles, each located &tin, where (AB) (N=ia) I(N+ie)
nis an integer taking its values betweerN andN, except 2’\‘*1 1 2n2
for N=0. Writing X|N=3—2a ;n peapw ] In a2+n2] :
V(N—ia)-V(1l-ia)= (A34)
= The residue from the double pole atin is
we have the last line of EA33) proportional to 2n?x(—1)" exp(NBAX2)
I'l—ia) T'(1+ia) Z 1 1 dX| T(N=x)I'(N+x)(x+n) n
- - 1+i
T(N=ia) [(NTia) | Y& \s—ia stia —in(—1)"exgNBAN2)
_TI'(l-ie) T(1+ia) 2 (N-n)['(N+n)
I'(N—ia) [(N+ia) X{14+2NBAnz+2n[ ¥ (N—n)—¥(N+n)]},
N—-1 2
1 2n (A35)
s#n \S"ta as+n providedz<0, and so the total residue at=in from Eq.

where the term in curly brackets contains the double pole a(tA34) IS
a=in. Hence in(—l)”equ,B)\nz){

L J ko d F'(N—n)I'(N+n)
n=1

N—1
Xexp( —ikz—x,e;1 (C|+iaDn|)u|) i exaNAn2)

N-1 TN
X 2—:1 s(N—s)ug

2n22 (s 1n )

s#n

+n[P(N+n)—¥Y(N—-n)]—-(1+NBAN2)

[BN-AN(1+NBANZ)], (A36)

giving finally
|
dk N—1 N—1
N lf fduexp(—lkz 7\,82 (Ci+iaDn)uy Z S(N—s)ug
2NB7Gm?
(ZWGﬁrﬁgN[F(N)F E {BI'= A1~ 2N(B7Gm)l|z|J}exi —2N(Bm=GnP)l| 2], (A37)
where
n(—1 n+1 I'(N 2 5 N—-1
h= I(‘(N—)n)lg(l\(l+)r3|) N-5+2n? S ( S|+ W (N+n) - (N-n)] . (A38)
Using the relation
N n—1 N—1
c§=:1 |rcn|:|Z:l |UI+I=§:n (N—|)U|, (A39)
we find
1 N N—-1 N
Nng f UeXF{ )\ﬂlzl (C|+iaDn|)U|)szl |rsn|
1 N n—1 N—1
_NZ‘ (Z S|r11,s+s§=:n (N—s)l,l]’s)
1 N [n-1 1 N-1 1 N-1 1
N N(ZWGBmz)NnZl Sgl (N_S_la) +32n (S+ia) (|]'_'[1 C|+iaDn|)
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N
- —N(Zwélgmz)N 21 {[q’(l—N+ia)—‘l’(n—N+ia)+\If(N+ia)—‘If(n+ia)]

|

N
~ N@2aGamM)N 21 ([‘I'(N_ia)JF‘I’(NJFia)—‘I’(N—nJrl—ia)—\If(nJria)]

( 1 I'(N—n+1l—ia) T'(n+ia)
(n—1)!(N-n)! T(N—ia) TI(N+tia)

1 I'(N-n+1—ia) T(n+ia)
= Di(N—m! ~ T(N—ia) T(Ntia)
- 1 EN) , _ ( 1 T(N-n+1—ia) T'(n+ia)
= N2aGpmN &, | YNt + ¥ (INH o) ]| o T — T (N=ia)  T(NTia)
d ( 1 '(N—-n+1-ia+o) F(n+ia+cr))
~do |\ (n—1)I(N—n)! ['(N=ia) [(N+ia)

o=0

B 1 ] ) I'l—ia) I'(l+ia)
= 2aepmpyNL V(N1 W INH ) g FNT )

_[ 1 d (F(N+1+20)T(1—ia+0'+o')F(l+ia+0')

[(N+1) do [(2+20)[(N=ia)[(N+ia) o
- 1 F(1-ia) T(1+ia)_ , , , ,
= GG AN TN Ta) TN Tl VNI T W(N+ia) =W (1—ia) = W(1+ia) ~2U (N+1)+2¥(2)]
- 1 Ml-ia) Tl+ia) [t 2 NP1 g
T 2aGBMONT(N—ia) [N+ia)| & s—ia & stia 224 571
1 Ml-ia) Tl+ia) [ 1 1 & 2n
T (27GBMN T(N—ia) [(N+ia) 2 Tia X stia 22 s | (A40)

where the curly bracket contains the double polexatin, and all other poles are in the same locations as before.
So we obtain

1 N

dk N—1 n—-1 N—1
anl fﬂj duexp(—ikz—xﬁgl (c|+iaDn.)u|>(l_El |u|+|2n (N—I)u|)

NAN de . T(l-ia) T+ia)["& 1 01 " 2n
2mGpm)N ) 27 I(N-ia) [(N+ia)| &hs—ia &hstia “Eis+l |a’+n
(A41)
The total residue ar=in from Eq.(A41) is
in(—1)neNsrnz [ N"L g M T | 1+NBANZ
I'(N=n)I'(N+n) Zgn sZ—n? _2521 S+1+%+[\I’(N+n)—\lf(N—n)]— n
_ —iexpNpAnz) [ 1
—W(Cn—ﬁAn(l-i-Nﬁ)\nZ) , (A42)

providedz< 0 (otherwise it vanishesand so
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N—-1 N—1
N f dkfduex;{—lkz )\,82 (C +|aDn|)u,)(E Iu,+2 (N—1)u,
n=1

2NB7G
(2wGﬁ£;;N[rp(N)]22 Cl- AN[l 2N(BwGP)l[2|] {exd —2N(BmGmA)l|2]], (A43)
where
n(—1)™rN 2] S MR T |
”ZF(N—n)r(Nm) 2; (gz__nf) Els+—1+—+[‘1’(N+n) W(N=N)]|. (A44)

Finally, we consider the expression

1 N N—1 N—1 N-1
anlfduexp( )\,82 (C +|aDn|)u,)Z _;r (N—1)(t—s)susu,
1 N - N—-1
) 2 2 (N=D(t=s)sh,
1 P XNENL ogs (Nt N
T (27GAmMANTI NZ 2 441 CstiaD, ¢ Ci+iaDy, H C+|aDnI (A45)
Interchanging the order of the sums gives
N N-1 N-1 N—1
(t—s)s (N—1) 1
nzlsz 21C-i-|aDnSCt—|—|a/ EIlCri-iaDm
_Nil G % (t—s)s  (N—1) [T(N)]2 T(N—-n+l-ia) T(n+ia)
& 5121 (CetiaD Cit+iaDy (n—1)!(N—n)!  T(N—ia) T (N+ia)
[T(N)]? o > (t—s)s I'(N-n+1—ia) T'(n+ia)
F(N+|a)F(N—|a)§=: =§S:+ 21((N s)(t+ia)(s+ia) T'(N—n+1) I'(n)
! ( (t—s) I'(N-n+1—ia) T(n+ia)
t 2\ INSsmia)(ttia) T(N—n+1)  T(n)
N . .
(N—=1)(t—s) I'(N—-n+1-ia) '(ntia)
+n2+1(t(r\| s ia)(N—t—ia) T(N-nt1) _ T(n (A46)
When summed oven, we obtain
N—-1
2k
P XNENL ogs (N—t) V1 gl B
Nn; & t;1C+|aDnSCt+|aD H Ci+iaD, NI ’ (A47)

.H (a?+12)?
=1

which has double poles and single-pole residuesyat+in for every nonzero value ofi<N. The coefficients of the
polynomial in the numerator are calculable, but we have not found any closed-form expression for them. The table below
contains results for values up = 10.
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N N—1
2k
k=1 A&

2(@®—1)(a’—2)

4(180-10%2+ 10a*+ 11a°)

8(36576- 38202 — 75a*+ 159(° + 14%°)

48(5263208- 11321242+ 162455+ 17087 A+ 254455+ 89% %)

288(1455926400 635262768+ 123441248%+ 43494890°+ 69826828+ 39983& 1%+ 716312

1152(1067349830400638760596688°+ 149678407488+ 34350170144°%+ 50981859488+ 351491854 1°
+1050518@%?+ 110314

9 41472(143590977331260.0371925735142¢ + 27508922447056' + 5307728339924 + 709200726955°
+52255261172°+ 19668423181+ 3527247@%4+ 23746%1°)

10  414720(1088073666828288089224919703007488 + 2584346309269992( + 4662765631167686
+573351004521468 + 42828568506938°+ 18168556816 18>+ 42140421618+ 4934782056
+226627219).

0 N OO 0o~ W

Hence we obtain

1 N N—-1 N—1 N-1
NE fduex;{—ABE (Ci+iaDyu | >, > (N—1)(t—s)su,
n=1 I=1 s=1 t=s+1
N—1

_ 2X2NB@Gn? >
~(27GBmA)NTIT(N)]* &4

{DM+ KM 1-2N(B7Gm?)l|z|]}exd — 2N(BmGm?)l|z|], (A48)

where the coefficientﬁ)|N and K|N are determined by the residues given above. These are given in the next two tables.

DY N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10
1 1 1 2 31 2117 2917 24869 113931
T3 4 45 144 4200 3600 22050 78400
_p 11 209 169 5599 2131 30347 941 601906
12 125 90 3087 1344 24300 1125 1630475
_a 1387 9278 12781 1468 85427 836537 3601223
B 1500 5145 5488 567 32400 332750 1597200
_4 72917 431581 214607 18987467 3170471 407903579
B 123480 333396 113400 8085285 1197900 146210350
s 1005251 22515781 31621187 440479867 4721124703
B 3333960 30187080 25874640 263178630 2292578288
=6 162182479 8830831883 2430681577 10937730746

1207483200 23686076700 3582153575 10746460725
108510757181 7762820713 22140852323

=7 1989630442800 46056260250 65502236800

s 53405900137 9952938913257
B 2579150574000 140792964111800

9 151474036840183
- 20274186832099200
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N=8 N=9 N=10
I 1 1 3 2 5 3 7 4
=1 -3 -3 5 -3 7 4 9 5
—p 2 _1 1 81 67 10 193 289
24 25 10 147 224 27 450 605
I 7 27 43 11 37 381 1297
=3 50 245 784 ~ 1512 "~ 540 "~ 3025 ~ 7260
I 257 829 361 853 551 1153
=4 3920 10584 5040 16335 21780 204490
I 2761 12431 3163 44893 24587
= 10584 304920 65340 920205 572572
6 34541 50012 368191 66629
3659040 2760615 1431430 2147145
7 248029 234797 274399
77297220 32207175 22902880
I 1075190 1812235
=8 1030629600 661893232
I 6514549
=9 19856796960
Summarizing:
" 2NB TG "t

dk
Nn 1f fduexp(—lkz )\,82 (Ci+iaDyu, | =

1Y dk ~ N
Nn;jﬂf (2 (N— s)us)exp(—mz wZ (C +|aDn|)u|)

2NgmGm? 't

(ZWG,BmZ)N[F(N)]ZE {BI'— AN 1-2N(B7GnP)l|z|]}exd — 2N(B7GnP)L|z]]

N—-1

1 N dk -1 N—1
_ _ 1 _
anl fhfdu(;mn;;n (N—s)l

2NB TG 2
~ (27GBM)NT(N)? 2

%Al’\‘[l—ZN(,BmeZ)HzH

N—-1 N-1 N—-1

%,s) exp( —ikz—)\,8|21 (Ci+iaDy)u

')

ex — 2N(B7Gn?)l|z|],

N
%Z fzd—:fdu( 21 t; (N—t)(t— s)susut)ex;J(—lkz )\,82 C+|aDn|)u|>

2NB7Gm2 N1

= GrGADNTTNIT & (DKL —2N(B7Gm)l |2l exd —2N(snGmP)l|2]].

The final expression for the one-particle distribution function is
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1‘cn<|o,z)=NJ%G/&)(N”[(N—l)!]z(Zwrn)m_zw2 2NBmm?(Bmc)>N-/2

B IN=1(27GBM)N YT (N)]?
1 [3(N-1)2 (N-D[A(N-1)+rs] &S -k
X0 T BmE| T 8N M~ N CMELIE I(N-K)

N-1
1+

N A <ﬁ2p4[1+(N—1)3] 3(N-2)B8p? 3(N—2)2)
AN oeme| T emEiNe D T 2mine1)? T aiN—1)
(A3=N2)Bp? [A3+(N—=2))\,]

m(N—1)? (N—1)

I=1

1
+Bm8

){BP—AP[l—zNwmeZ)Hzl]}

2[2)\3+(N—2))\2]< 1 NBp?[ 1 )
Bmc 2(N—1) 2m [(N—1)?

C{\'—IEA{\‘[l—ZN(ﬁanF)HZH

N N N 2 NBp® 2
_,Bm—cz{D' +K| [1-2N(B7Gm )||Z|]} ex —m—ZWGNﬁm ||Z|

:(2wem2)(|\|ﬁ)3’2exp[_ 1 3(N—1)2>\_(N—l)[)\z(N—l)+)\3]_ "N -k }
V2mm(N—1) pmc 8N ' N YEL I I(N=K)

1+

N-1
x 2
=1

N A <ﬁ2p4[1+('\|—1)3] 3(N-2)8p? 3(N—2)2>
AN oeme| T emEiN— D T 2mine 12 T aiN—1)
(N3=X2)Bp? [Az+(N—=2)\;]
m(N—1)? (N=1)

1
+ﬁm§

(Bl A1 2N sG]

+2[2)\3+(N—2))\2]( 1 N,sz[ 1 D

1
Bmc 2(N—=1) 2m [(N-1)? CIN_TAlN[l_ZN(,BWGmZ)”ZH

g Ny N 2 NBp® 2
,Bmcz{D' + K [1-2N(B7Gm)l|z|]} | ex —m—ZWGNBm lz|

. (A53)

The canonical density distribution function is given by integratiori g{p,z) overp,

pe2)= | dptentp2

_ (27GnP)(NB)*? [2rm(N—1)
- 2am(N-1) NB

1 [3(N—1)? (N=1D)[A(N=1)+\z] (I—k)
XEXR T BmE| T 8N M~ N CME I E [Nk

«

N-1 N-1

N—-1

x 2

=1

N
28mc

3[1+(N-1)°] 3(N-2) 3(N—2)2”

1+ ANZ(N-1) @ 2N(N—1) " 4(N—-1)
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1 [(A3—Np) [Ag+(N—2)A;]
Bmc2 N(N—1) (N=1)

|8 A1~ 2N G 1)

2[2>\3+(N—2)>\2]7Tem( 1 { 1 D

c,’“—%Ar‘[l—zN(ﬁmez)||z|]

BmMc 2(N—1) |2(N—1)2
4
ﬁmCZ{D + KM 1-2N(B7GmP)l|z|]}exp(— 27GNBm?l|z|)
1 [3(N=1)2  (N=D)[(N=1)+rg] 0 1(N—k)

:(ZWGmZNB)eX’{_Bch[ BN M N 424 24, LIN-K)

Nt 1 [3n; (N=1)2 | [[Ao(N=1)+\g]
5 e e (B
+,8n11c2 ([)\Z(N_Nl)H“] AN—\ KN [1—2N(,87TGmZ)I|z|]]exq—ZmezN,BHzD. (A54)

The final expressions have al|=1. It is straightforward to show that the coefficiev@tg and B,N obey the sum rules

1 N-1
E A'=55N"3" (A55)
N—1)2
E BN= ( ; (A56)
where Eq.(A55) was previously derived in the—o limit [1]. Sincef” .dzp.(z)=1, we must have
1 [3N\; (N—1)2 v 2[[Aa(N=1)+hq]
22 [ ,Bmcz[ N T2 TB el
1 3(N—1)2)\ (N=DDAN=D+rs] NS -k .
X pmc 8N v N Y& L (N—K) (AS7)
or alternatively, to the relevant order @)
N—1
1 1
> —AN=C, (A58)
= 2
N—1 1
> TBN=5(N-1), (A59)
=1 | 2
N—1 N—-1 N-1
1 1 (1=k)
—D/ == —_— A60
21 I 7' 2& L L(N=K) (AG0)
each of which can be straightforwardly verified. We also can show
N—1
1 (N—1)
2 cM=c) N (A61)
;1 Ccl'=15- (A62)
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